We report on microfabrication and assembly process development on transparent, biocompatible polymers for patterning electrodes and growing electrically active cells for cell-based biosensor applications. Such biosensors are typically fabricated on silicon or glass wafers with traditional microelectronic processes that can be cost-prohibitive without imparting necessary biological traits on the devices, such as transparency and compatibility for the measurement of electrical activity of electrogenic cells and other biological functions. We have developed and optimized several methods that utilize traditional micromachining and non-traditional approaches such as printed circuit board (PCB) processing for fabrication of electrodes and growing cells on the transparent polymers polyethylene naphthalate (PEN) and polyethylene terephthalate (PET).
View Article and Find Full Text PDFWe report a biosensor based on organophosphorus hydrolase (OPH) multilayer modified microcantilever (MCL) for detection of organophosphorus compounds (OPs). The assay is based on substrate-dependent bending of the OPH functionalized MCLs. The cantilever bending amplitude at equilibrium was a function of the concentration of paraoxon with the dynamic range extending from 10(-7) to 10(-3)M.
View Article and Find Full Text PDF