The quality of brain MRI volumes is often compromised by motion artifacts arising from intricate respiratory patterns and involuntary head movements, manifesting as blurring and ghosting that markedly degrade imaging quality. In this study, we introduce an innovative approach employing a 3D deep learning framework to restore brain MR volumes afflicted by motion artifacts. The framework integrates a densely connected 3D U-net architecture augmented by generative adversarial network (GAN)-informed training with a novel volumetric reconstruction loss function tailored to 3D GAN to enhance the quality of the volumes.
View Article and Find Full Text PDFPurpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase () mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Data scarcity and data imbalance are two major challenges in training deep learning models on medical images, such as brain tumor MRI data. The recent advancements in generative artificial intelligence have opened new possibilities for synthetically generating MRI data, including brain tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem and enhance training data availability.
View Article and Find Full Text PDFBioengineering (Basel)
September 2023
Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. This study sought to develop deep learning networks for non-invasive IDH classification using T2w MR images while comparing their performance to a multi-contrast network. Methods: Multi-contrast brain tumor MRI and genomic data were obtained from The Cancer Imaging Archive (TCIA) and The Erasmus Glioma Database (EGD).
View Article and Find Full Text PDF: Deep learning has shown promise for predicting the molecular profiles of gliomas using MR images. Prior to clinical implementation, ensuring robustness to real-world problems, such as patient motion, is crucial. The purpose of this study is to perform a preliminary evaluation on the effects of simulated motion artifact on glioma marker classifier performance and determine if motion correction can restore classification accuracies.
View Article and Find Full Text PDFBackground: One of the most important recent discoveries in brain glioma biology has been the identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as markers for therapy and prognosis. 1p/19q co-deletion is the defining genomic marker for oligodendrogliomas and confers a better prognosis and treatment response than gliomas without it. Our group has previously developed a highly accurate deep-learning network for determining IDH mutation status using T2-weighted (T2w) MRI only.
View Article and Find Full Text PDFWe developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into individual binary-segmentation problems for each subcomponent. We implemented a 3-fold cross-validation to generalize the network's performance.
View Article and Find Full Text PDFBackground: Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures. The purpose of this study was to develop a highly accurate, MRI-based, voxelwise deep-learning IDH classification network using T2-weighted (T2w) MR images and compare its performance to a multicontrast network.
View Article and Find Full Text PDFNoninvasive, direct measurement of local muscle blood flow in humans remains limited. Diffuse correlation spectroscopy (DCS) is an emerging technique to measure regional blood flow at the microvascular level. In order to better understand the strengths and limitations of this novel technique, we performed a validation study by comparing muscle blood flow changes measured with DCS and Doppler ultrasound during exercise.
View Article and Find Full Text PDF