Publications by authors named "Chand J Desai"

During Drosophila embryogenesis, both the cytoplasmic Abelson tyrosine kinase (Abl) and the membrane bound tyrosine phosphatase PTP69D are required for proper guidance of CNS and motor axons. We provide evidence that PTP69D modulates signaling by Abl and its antagonist, Ena. An Abl loss-of function mutation dominantly suppresses most Ptp69D mutant phenotypes including larval/pupal lethality and CNS and motor axon defects, while increased Abl and decreased Ena expression dramatically increase the expressivity of Ptp69D axonal defects.

View Article and Find Full Text PDF

PTP69D is a receptor protein tyrosine phosphatase that was identified as a key regulator of neuromuscular axon guidance in Drosophila, and has subsequently been shown to play a similar role in the central nervous system and retina. Three Ptp69D alleles with mutations involving catalytically important residues exhibit a high degree of phenotypic variation with viability of mutant adult flies ranging from 0 to 96%, and ISNb motor nerve defects ranging from 11 to 57% [Desai and Purdy, 2003]. To determine whether mutations in Ptp69D affecting axon guidance and viability demonstrate losses of phosphatase activity and whether differences in catalytic potential underlie phenotypic variability, we expressed full-length wild-type and mutant PTP69D protein in Schneider 2 cells, and assessed phosphatase activity using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferone phosphate (DiFMUP).

View Article and Find Full Text PDF