This work is aimed to develop of a new class of versatile aptasensor to specifically detect aflatoxin B1 (AFB1) using dual-channel detection method. To achieve this objective, gold nanoparticles (AuNPs) having peroxidase-like activity and capability of promoting silver deposition were used as the versatile label for both colorimetric and electrochemical techniques. First of all, aptamer (apt) modified FeO@Au magnetic beads (MBs-apt) and cDNA modified AuNPs (cDNA-AuNPs) were prepared to use as capture probes and signal probes, respectively.
View Article and Find Full Text PDFDevelopment of sensitive methods for trace aflatoxin B1 (AFB1) determination is of great significance due to its high toxicity and carcinogenicity. Herein, 3-mercaptopropionic acid (MPA)-capped ternary CdZnTe quantum dots (QDs) have been prepared via a simple hydrothermal route. We found that they exhibited enhanced intensity when benchmarked against their binary counterpart CdTe QDs.
View Article and Find Full Text PDFDevelopment of an efficient method for the simultaneous detection of two highly concerning mycotoxins, ochratoxin A (OTA) and aflatoxin B1 (AFB1), is of great significance on food safety monitoring. Herein, a magnetically controlled fluorescence aptasensor for simultaneous determination of OTA and AFB1 has been successfully developed. The working principle of the aptasensor is based on the specific aptamer-mycotoxin recognition and further leads to the partial release of two distinguishable fluorescence labels from the magnetic carriers.
View Article and Find Full Text PDFAflatoxin B1 (AFB1), one of the most common mycotoxins in food matrixes, has been identified as the most toxic contaminant with mutagenic, teratogenic, immunosuppressive, and carcinogenic effects. In this work, a magnetically assembled aptasensing device has been designed for label-free determination of AFB1 by employing a disposable screen-printed carbon electrode (SPCE) covered with a designed polydimethylsiloxane (PDMS) film as the micro electrolytic cell. The magnetically controlled bio-probes were firstly prepared by immobilization of the thiolated aptamers on the FeO@Au magnetic beads, which was rapidly assembled on the working electrode of SPCE within 10 s, by using a magnet placed at the opposite side.
View Article and Find Full Text PDF