EFHC1, a gene mutated in juvenile myoclonic epilepsy, encodes EFHC1, a protein with three DM10 domains and one EF-hand motif. We recently demonstrated that this molecule is a microtubule-associated protein (MAP) implicated in neuronal migration. Because some controversies persist about the precise localization in the CNS, we studied the neuroanatomical distribution of EFHC1 in mature and developing mouse brain.
View Article and Find Full Text PDFBackground: Bone marrow stromal cells and radial glia are two stem cell types with neural phenotypic plasticity. Bone marrow mesenchymal stem cells can differentiate into osteocytes, chondrocytes and adipocytes, but can also differentiate into non-mesenchymal cell, i.e.
View Article and Find Full Text PDFCan a gene defect be responsible for the occurrence in an individual, at a particular age, of such a muscle twitch followed by relaxation called: "myoclonus" and defined as sudden, brief, shock-like movements? Genetic defects could indeed determine a subsequent cascade of molecular events (caused by abnormal encoded proteins) that would produce new aberrant cellular relationships in a particular area of the CNS leading to re-built "myoclonogenic" neuronal networks. This can be illustrated reviewing some inherited neurological entities that are characterized by a predominant myoclonic picture and among which a clear gene defect has been identified. In the second part of this chapter, we will also propose a new point of view on how some structural genes could, under certain conditions, when altered, produced idiopathic generalized epilepsy with myoclonic jerks, taking juvenile myoclonic epilepsy (JME) and the myoclonin (EFHC-1) gene as examples.
View Article and Find Full Text PDFA novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome.
View Article and Find Full Text PDFDuring embryogenesis and wing disc morphogenesis in Drosophila, different developmental mechanisms are used along the antero-posterior (A-P) axis. The establishment of antero-posterior polarity requires the secreted protein Hedgehog, which is only expressed in P compartments and which is a key effector of the Engrailed transcription factor. At the same time, it is essential that both engrailed and hedgehog (hh) remain in a repressed state in A compartments.
View Article and Find Full Text PDFIn Drosophila, the subdivision into compartments requires the expression of engrailed (en) and hedgehog (hh) in the posterior cells and of cubitus-interruptus (ci) in the anterior cells. Whereas posterior cells express hh, only anterior cells are competent to respond to the hh signal, because of the presence of ci expression in these cells. We show here that engrailed and polyhomeotic (ph), a member of the Polycomb Group (PcG) genes, act concomitantly to maintain the repression of ci in posterior compartments during development.
View Article and Find Full Text PDFThiamine triphosphate (ThTP) is found in small amounts in most organisms from bacteria to mammals, but little is known about its physiological role. In vertebrate tissues, ThTP may act as a phosphate donor for the phosphorylation of certain proteins; this may be part of a new signal transduction pathway. We have recently characterized a highly specific 25-kDa thiamine triphosphatase (ThTPase) that is expressed in most mammalian tissues.
View Article and Find Full Text PDFMelanin-concentrating hormone (MCH) is highly expressed in the brain and modulates feeding behavior. It is also expressed in some peripheral tissues where its role remains unknown. We have investigated MCH function in human and mouse immune cells.
View Article and Find Full Text PDF