Publications by authors named "Chananat Klomsiri"

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine produced and secreted by immune cells in response to an infection, often in response to interferon (IFN) stimulation. In cancer, it has also been shown that IFN stimulates the production of TRAIL, and it has been proposed that this TRAIL can induce apoptosis in an autocrine or paracrine manner in different cancer cells. Yet, the mechanism mediating TRAIL upregulation and the implications of TRAIL as an apoptotic molecule in cancer cells are still poorly understood.

View Article and Find Full Text PDF

Reactive oxygen species (ROS), in particular HO, regulate intracellular signaling through reversible oxidation of reactive protein thiols present in a number of kinases and phosphatases. HO has been shown to regulate mitogen-activated protein kinase (MAPK) signaling depending on the cellular context. We report here that in human articular chondrocytes, the MAPK family member c-Jun N-terminal kinase 2 (JNK2) is activated by fibronectin fragments and low physiological levels of HO and inhibited by oxidation due to elevated levels of HO The kinase activity of affinity-purified, phosphorylated JNK2 from cultured chondrocytes was reversibly inhibited by 5-20 μm HO Using dimedone-based chemical probes that react specifically with sulfenylated cysteines (RSOH), we identified Cys-222 in JNK2, a residue not conserved in JNK1 or JNK3, as a redox-reactive site.

View Article and Find Full Text PDF

Objective: Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteoarthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling.

Methods: Chondrocytes isolated from OA and normal human articular cartilage were analyzed using analogs of dimedone that specifically and irreversibly react with protein S-sulfenylated cysteines.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a growth factor for many cells including prostate and ovarian cancer-derived cell lines. LPA stimulates H2O2 production which is required for growth. However, there are significant gaps in our understanding of the spatial and temporal regulation of H2O2-dependent signaling and the way in which signals are transmitted following receptor activation.

View Article and Find Full Text PDF

β-ketoesters are robust probes for labeling sulfenic acid (-SOH) proteins allowing quantitative cleavage of the tag for improved analysis of the labeled peptides by MS.

View Article and Find Full Text PDF

Facile, two-step synthesis and kinetic characterization of new chemical probes for selective labeling of sulfenic acid (-SOH) in proteins are presented. The synthesis route relies on the simple and highly efficient Michael addition of thiol containing tags or linkers to 4-cyclopentene-1,3-dione, the unsaturated derivative of 1,3-cyclopentanedione.

View Article and Find Full Text PDF

Background: Alkyl hydroperoxidase activity provides an important antioxidant defense for bacterial cells. The catalytic mechanism requires two peroxidases, AhpC and AhpD, where AhpD plays the role of an essential adaptor protein.

Results: The crystal structure of a putative AhpD from Pseudomonas aeruginosa has been determined at 1.

View Article and Find Full Text PDF

Peroxiredoxins (Prxs) are a widespread and highly expressed family of cysteine-based peroxidases that react very rapidly with H₂O₂, organic peroxides, and peroxynitrite. Correct subfamily classification has been problematic because Prx subfamilies are frequently not correlated with phylogenetic distribution and diverge in their preferred reductant, oligomerization state, and tendency toward overoxidation. We have developed a method that uses the Deacon Active Site Profiler (DASP) tool to extract functional-site profiles from structurally characterized proteins to computationally define subfamilies and to identify new Prx subfamily members from GenBank(nr).

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is produced by tumor cells and is present in the ascites fluid of ovarian cancer patients. To determine the role of endogenous LPA in the ovarian cancer cell line SKOV3, we treated cells with the LPA receptor antagonist VPC32183 and found that it inhibited cell growth and induced apoptosis. Exogenous LPA further stimulated ERK and Akt phosphorylation and NF-κB activity.

View Article and Find Full Text PDF

The enzymes involved in metabolism and signaling are regulated by posttranslational modifications that influence their catalytic activity, rates of turnover, and targeting to subcellular locations. Most prominent among these has been phosphorylation/dephosphorylation, but now a distinct class of modification coming to the fore is a set of versatile redox modifications of key cysteine residues. Here we review the chemical, structural, and regulatory aspects of such redox regulation of enzymes and discuss examples of how these regulatory modifications often work in concert with phosphorylation/dephosphorylation events, making redox dependence an integral part of many cell signaling processes.

View Article and Find Full Text PDF

Reversible thiol modification is a major component of the modulation of cell-signaling pathways by reactive oxygen species. Hydrogen peroxide, peroxynitrite, or lipid hydroperoxides are all able to oxidize cysteines to form cysteine sulfenic acids; this reactive intermediate can be directly reduced to thiol by cellular reductants such as thioredoxin or further participate in disulfide bond formation with glutathione or cysteine residues in the same or another protein. To identify the direct protein targets of cysteine modification and the conditions under which they are oxidized, a series of dimedone-based reagents linked to affinity or fluorescent tags have been developed that specifically alkylate and trap cysteine sulfenic acids.

View Article and Find Full Text PDF

Sulfenic acids, formed as transient intermediates during the reaction of cysteine residues with peroxides, play significant roles in enzyme catalysis and regulation, and are also involved in the redox regulation of transcription factors and other signaling proteins. Therefore, interest in the identification of protein sulfenic acids has grown substantially in the past few years. Dimedone, which specifically traps sulfenic acids, has provided the basis for the synthesis of a novel group of compounds that derivatize 1,3-cyclohexadione, a dimedone analogue, with reporter tags such as biotin for affinity capture and fluorescent labels for visual detection.

View Article and Find Full Text PDF

S-Nitrosothiols (RSNOs) represent an important class of post-translational modifications that preserve and amplify the actions of nitric oxide and regulate enzyme activity. Several regulatory proteins are now verified targets of cellular S-nitrosation, and the direct detection of S-nitrosated residues in proteins has become essential to better understand RSNO-mediated signaling. Current RSNO detection depends on indirect assays that limit their overall specificity and reliability.

View Article and Find Full Text PDF

Cysteine sulfenic acid formation in proteins results from the oxidative modification of susceptible cysteine residues by hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This species represents a biologically significant modification occurring during oxidant signaling or oxidative stress, and it can modulate protein function. Most methods to identify such oxidatively modified proteins rely on monitoring the loss of one or more thiol group(s) or on selective labeling of nascent thiol groups following reduction of oxidized proteins.

View Article and Find Full Text PDF

Lipid hydroperoxides are highly toxic to biological systems. Here, the Xanthomonas campestris pv. phaseoli sensing and protective systems against linoleic hydroperoxide (LOOH) were investigated by examining the phenotypes, biochemical and regulatory characteristics of various Xanthomonas mutants in known peroxide resistance pathways.

View Article and Find Full Text PDF

Alkyl hydroperoxide reductase (ahpC) and organic hydroperoxide resistance (ohr) are distinct genes, structurally and regulatory, but have similar physiological functions. In Xanthomonas campestris pv. phaseoli inactivation of either gene results in increased sensitivity to killing with organic peroxides.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongpn9rkegrd2kh5ihi46a8c3vgdcelpv8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once