Publications by authors named "Chanadda Phawachalotorn"

This study introduces a novel, eco-friendly composite, uncalcined mesoporous silica nanoparticles incorporated into a starch cryogel (MSNs-Cry), designed for the effective removal of methyl orange (MO) from water. MSNs-Cry integrates uncalcined mesoporous silica nanoparticles (MSNs) within a starch cryogel network, leveraging the high adsorption capacity of MSNs. The composite achieved a maximum adsorption capacity of 18.

View Article and Find Full Text PDF

Toward the development of a practical and green approach for removing phosphate from water, a monolithic cryogel based on starch and calcium silicate hydrate (Cry-CSH) was employed as a phosphate adsorbent in a continuous flow system for the first time. The influence of flow rate, initial phosphate concentration, and adsorbent height on the adsorption efficiency was investigated. As the rate of flow and the initial concentration of phosphate increased, the total quantity of adsorbed phosphate dropped; however, the performance of the column was greatly enhanced by an increase in adsorbent height.

View Article and Find Full Text PDF

A green monolithic starch cryogel was prepared and applied for the removal of methylene blue (MB) using a batch system. The influence of various experimental parameters on MB adsorption was investigated. High removal efficiency (81.

View Article and Find Full Text PDF

A novel colorimetric sheet based on Griess reagent-doped mesoporous silica nanoparticles was developed for nitrite detection. Griess reagent was adsorbed on long-range ordered hexagonal mesoporous silica nanoparticles and developed ink-bottle pores with some disorder. When the modified nanoparticles were bound using starch to fabricate a thin (~ 313 μm) colorimetric sheet, spherical particles with a rougher surface and some distortion of their mesoporosity were observed.

View Article and Find Full Text PDF

A tetramethylammonium hydroxide (TMAH)-doped starch film was developed for trinitrotoluene (TNT) detection. A purple Janowsky anion was obtained from the reaction of TNT with released TMAH. When the film was used in conjunction with digital image colorimetry (DIC), rapid quantitative analysis of TNT was achieved.

View Article and Find Full Text PDF