Publications by authors named "Chan-Soo Lee"

The circular waveguide aperture or open-end radiator, one of the canonical antenna elements, can be filled with a dielectric material for miniaturization. With dielectric filling, the aperture reflection increases and impedance matching is necessary. This paper presents a simple but innovative simulation-based approach to the aperture matching of a dielectric-filled circular waveguide aperture.

View Article and Find Full Text PDF

The maximum reflection at an open end of a standard rectangular waveguide is about -10 dB in its operating frequency range. It is often used without matching. For critical applications, it is desirable to further reduce the reflection coefficient.

View Article and Find Full Text PDF

This paper presents a design for a monopulse reflector antenna with asymmetric beamwidths for radar applications at the Ku band. The proposed design features a rectangular waveguide monopulse feed and a truncated parabolic reflector. An array of four open-ended rectangular waveguides were employed to realize a compact monopulse feed.

View Article and Find Full Text PDF

Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex.

View Article and Find Full Text PDF

Bioinformatic and functional data link integrin-mediated cell adhesion to cellular senescence; however, the significance of and molecular mechanisms behind these connections are unknown. We now report that the focal adhesion-localized βPAK-interacting exchange factor (βPIX)-G protein-coupled receptor kinase interacting protein (GIT) complex controls cellular senescence in vitro and in vivo. βPIX and GIT levels decline with age.

View Article and Find Full Text PDF

Purpose: This study intended to explore the clinical outcomes of PFNA-II, one of the commonly used fixation devices for intertrochanteric fractures and the association of clinical results with the extent of proximal nail protrusion.

Materials And Methods: Of 315 cases that underwent internal fixation using PFNA-II between September 2010 and June 2018 among intertrochanteric fracture patients aged over 65 years, a total of 86 patients with an ability to communicate clearly and a minimum follow-up of 6 months were retrospectively reviewed. We classified the subjects according to PFNA-II protrusion over the greater trochanter area on anteroposterior radiographs.

View Article and Find Full Text PDF

Although deformation and aging treatments of Cu-3 wt%Ti alloys dramatically enhance their mechanical properties, the corrosion behavior of ultra-fine grained (UFG) Cu-3 wt%Ti alloys produced by a combination of hot rolling and artificial aging has not been extensively explored yet. To bridge this gap, we herein probe the corrosion behavior of an UFG Cu-3 wt%Ti alloy produced by cold rolling and artificial aging, revealing that cast sample corrosion preferentially occurs around the -Cu₄Ti phase. Compared to that of the coarse-grained Cu-3 wt%Ti alloy, the corrosion resistance of its UFG counterpart is remarkably higher, which is ascribed to the effects of grain refinement and enveloping between the -Cu matrix and -Cu₄Ti in the absence of pitting corrosion.

View Article and Find Full Text PDF

Background: Aberrant gene expression in the gut mucosa might contribute to the initiation and progression of Crohn's disease (CD). RNA sequencing (RNA-seq) provides precise measurements of expression levels of transcripts and their isoforms. The aim of this study was to use RNA-seq to investigate transcriptomic differences and identify significantly differentially expressed transcripts in inflamed and noninflamed intestinal mucosa of CD patients.

View Article and Find Full Text PDF

p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity.

View Article and Find Full Text PDF

Background: Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The present study explored the possibility that NM II regulates neuronal differentiation, particularly morphological changes in growth cones and the distal axon, through guanine nucleotide exchange factors (GEFs) of the Dbl family.

View Article and Find Full Text PDF

β-Catenin, a component of Wnt signaling, plays a key role in colorectal carcinogenesis. The phosphorylation status of β-catenin determines its fate and affects its cellular function, and serine 675 (S675) was previously identified as a common target of p21-activated kinase 1 (PAK1) and protein kinase A. In the present study, we explored the PAK1-specific phosphorylation site(s) in β-catenin.

View Article and Find Full Text PDF

Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood.

View Article and Find Full Text PDF

Angiotensin II (Ang II) stimulates migration of vascular smooth muscle cell (VSMC) in addition to its contribution to contraction and hypertrophy. It is well established that Rho GTPases regulate cellular contractility and migration by reorganizing the actin cytoskeleton. Ang II activates Rac1 GTPase, but its upstream guanine nucleotide exchange factor (GEF) remains elusive.

View Article and Find Full Text PDF

We previously showed that p21-activated kinase 2 (PAK2), a major PAK isoform expressed in PC12 cells, mediates neurite outgrowth via Rac1 GTPase. RhoGDI1 forms a complex with Rac1, resulting in its inhibition. Rac1 activation requires dissociation from RhoGDI1.

View Article and Find Full Text PDF

p21-activated kinase (PAK)-interacting exchange factor (PIX) is known to be involved in regulation of Cdc42/Rac GTPases and PAK activity. PIX binds to the proline-rich region of PAK, and regulates biological events through activation of Cdc42/Rac GTPase. To further investigate the role of PIX we produced monoclonal antibodies (Mab) against bPIX.

View Article and Find Full Text PDF

Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway.

View Article and Find Full Text PDF

p21-activated kinase (PAK) targeting to the plasma membrane is essential for PC12 cell neurite outgrowth. Phospholipase C-gamma1 (PLC-gamma1) can mediate the PAK translocation in response to growth factors, since PLC-gamma1 binds to both tyrosine-phosphorylated receptor tyrosine kinases and PAK through its SH2 and SH3 domain, respectively. In the present study, we examined a potential role for PLC-gamma1 in the basic fibroblast growth factor (bFGF)-induced PAK translocation using stable PC12 cell lines that overexpress in a tetracycline-inducible manner either the wild-type FGFR-1 or the Y766F FGFR-1 mutant.

View Article and Find Full Text PDF