High-entropy alloys (HEAs) provide new research avenues for alloy combinations in the periodic table, opening numerous possibilities in novel-alloy applications. However, their electrical characteristics have been relatively underexplored. The challenge in establishing an HEA electrical conductivity model lies in the changes in electronic characteristics caused by lattice distortion and complexity of nanostructures.
View Article and Find Full Text PDFDue to extraordinary electronic and optoelectronic properties, large-scale single-crystal two-dimensional (2D) semiconducting transition metal dichalcogenide (TMD) monolayers have gained significant interest in the development of profit-making cutting-edge nano and atomic-scale devices. To explore the remarkable properties of single-crystal 2D monolayers, many strategies are proposed to achieve ultra-thin functional devices. Despite substantial attempts, the controllable growth of high-quality single-crystal 2D monolayer still needs to be improved.
View Article and Find Full Text PDFIn this study, we have designed an electrically tunable multi-band terahertz (THz) metamaterial filter based on graphene and multiple-square-loop structures. The structure contains multiple metal square loops, and these loops with different sizes correspond to different THz frequencies, achieving our expected efficacy of a multiband wave filter. Furthermore, by sweeping external voltages, we could change graphene's Fermi levels, and thus the high-sensitivity THz filter's capability from single-band to multi-band filtering can be modulated.
View Article and Find Full Text PDFThe development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.
View Article and Find Full Text PDFRecently, nanoscale light manipulation using surface plasmon polaritons (SPPs) has received considerable research attention. The conventional method of detecting SPPs is through light scattering or using bulky Si or Ge photodetectors. However, these bulky systems limit the application of nanophotonic circuits.
View Article and Find Full Text PDFBorophene (B), with remarkably unique chemical binding in its crystallographic structural phases including anisotropic structures, theoretically has high Young's modulus and thermal conductivity. Moreover, it is metallic in nature, and has recently joined the family of two-dimensional (2D) materials and is poised to be employed in flexible hetero-layered devices and sensors in fast electronic gadgets and excitonic devices. Interfacial coupling helps individual atomic sheets synergistically work in tandem, and is very crucial in controllable functionality.
View Article and Find Full Text PDFTwisted light carries a well-defined orbital angular momentum (OAM) of per photon. The quantum number of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultrawide bandwidth optical communication structures. In spite of its interesting properties, twisted light interaction with solid state materials, particularly two-dimensional materials, is yet to be extensively studied experiments.
View Article and Find Full Text PDFDevelopment of the wideband and tunable quasi-optic terahertz (THz) components is in high demand. In this work, we demonstrate a tunable achromatic quarter-wave plate (AQWP) for the THz frequency range. The phase retardation of this device can be set at 90° ± 9° from 0.
View Article and Find Full Text PDFGraphene near charge neutrality is expected to behave like a quantum-critical, relativistic plasma-the "Dirac fluid"-in which massless electrons and holes collide at a rapid rate. We used on-chip terahertz spectroscopy to measure the frequency-dependent optical conductivity of clean, micrometer-scale graphene at electron temperatures between 77 and 300 kelvin. At charge neutrality, we observed the quantum-critical scattering rate characteristic of the Dirac fluid.
View Article and Find Full Text PDFWe present a measurement of the time-resolved photoelectron kinetic energy spectrum of ethylene using 156 nm and 260 nm laser pulses. The 156 nm pulse first excites ethylene to the (1)B1u (ππ(∗)) electronic state where 260 nm light photoionizes the system to probe the relaxation dynamics with sub-30 fs resolution. Recent ab initio calculations by Mori et al.
View Article and Find Full Text PDFIndium-tin-oxide nanowhiskers were employed as transparent electrodes in a liquid-crystal terahertz phase shifter. Transmittance of the device was as high as ∼75%. Phase shift exceeding π/2 at 1.
View Article and Find Full Text PDFIndium-tin-oxide (ITO) nanorods (NRs) and nanowhiskers (NWhs) were fabricated by an electron-beam glancing-angle deposition (GLAD) system. These nanomaterials are of interests as transparent conducting electrodes in various devices. Two terahertz (THz) time-domain spectrometers (TDS) with combined spectral coverage from 0.
View Article and Find Full Text PDFIndium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model.
View Article and Find Full Text PDFTerahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally.
View Article and Find Full Text PDF