We investigated the multi-domain states of a multiferroic La-doped BiFeO (BLFO) thin film by examining diffraction patterns in optical second-harmonic generation (SHG) measurement. By directing a laser onto the domain wall within the domain-patterned sample, we observed clear diffraction signatures of SHG waves generated from two ferroelectric domains. We explained the experimental results of the diffraction patterns, including the intensity distribution and the polarization characteristics, using Fresnel propagation of SHG waves.
View Article and Find Full Text PDFIn atomically thin van der Waals materials, grain boundaries-the line defects between adjacent crystal grains with tilted in-plane rotations-are omnipresent. When the tilting angles are arbitrary, the grain boundaries form inhomogeneous sublattices, giving rise to local electronic states that are not controlled. Here we report on epitaxial realizations of deterministic MoS mirror twin boundaries (MTBs) at which two adjoining crystals are reflection mirroring by an exactly 60° rotation by position-controlled epitaxy.
View Article and Find Full Text PDFIonic movement has received renewed attention in recent years, particularly in the field of ferroelectric oxides, since it is intrinsically linked to chemical reaction kinetics and ferroelectric phase stability. The associated surface electrochemical processes coupled local ionic transport with an applied electric bias, exhibiting very high ionic mobility at room temperature based on a simple electrostatics scenario. However, few studies have focused on the applied-polarity dependence of ionic migration with directly visualized maps.
View Article and Find Full Text PDFWe report the synthesis of ethylenediamine-intercalated NbSe and Li-ethylenediamine-intercalated MoSe single crystals with increased interlayer distances and their electronic structures measured by means of angle-resolved photoemission spectroscopy (ARPES). X-ray diffraction patterns and transmission electron microscopy images confirm the successful intercalation and an increase in the interlayer distance. ARPES measurement reveals that intercalated NbSe shows an electronic structure almost identical to that of monolayer NbSe.
View Article and Find Full Text PDFWe investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic FeGeTe and the ferroelectric InSe. It is observed that gate voltages applied to the FeGeTe/InSe heterostructure device modulate the magnetic properties of FeGeTe with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane InSe and FeGeTe lattice constants for both voltage polarities.
View Article and Find Full Text PDFTopological textures of ferroelectric polarizations have promise as alternative devices for future information technology. A polarization rotation inevitably deviates from the stable orientation in axial ferroelectrics, but local energy losses compromise the global symmetry, resulting in a distorted shape of the topological vortex or inhibiting the vortex. Easy planar isotropy helps to promote rotating structures and, accordingly, to facilitate access to nontrivial textures.
View Article and Find Full Text PDFMobile defects in solid-state materials play a significant role in memristive switching and energy-efficient neuromorphic computation. Techniques for confining and manipulating point defects may have great promise for low-dimensional memories. Here, we report the spontaneous gathering of oxygen vacancies at strain-relaxed crack walls in SrTiO thin films grown on DyScO substrates as a result of flexoelectricity.
View Article and Find Full Text PDFInteraction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO is reported, which boosts the square-tensile-strain to BaTiO and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation.
View Article and Find Full Text PDFPhase transition points can be used to critically reduce the ionic migration activation energy, which is important for realizing high-performance electrolytes at low temperatures. Here, we demonstrate a route toward low-temperature thermionic conduction in solids, by exploiting the critically lowered activation energy associated with oxygen transport in Ca-substituted bismuth ferrite (BiCaFeO) films. Our demonstration relies on the finding that a compositional phase transition occurs by varying Ca doping ratio across x ≃ 0.
View Article and Find Full Text PDFThe orbital degree of freedom, strongly coupled with the lattice and spin, is an important factor when designing correlated functions. Whether the long-range orbital order is stable at reduced dimensions and, if not, what the critical thickness is remains a tantalizing question. Here, we report the melting of orbital ordering, observed by controlling the dimensionality of the canonical e orbital system LaMnO.
View Article and Find Full Text PDFMobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm C, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching.
View Article and Find Full Text PDFThe emergence of a domain wall property that is forbidden by symmetry in bulk can offer unforeseen opportunities for nanoscale low-dimensional functionalities in ferroic materials. Here, we report that the piezoelectric response is greatly enhanced in the ferroelastic domain walls of centrosymmetric tungsten trioxide thin films due to a large strain gradient of 10 m, which exists over a rather wide width (~20 nm) of the wall. The interrelationship between the strain gradient, electric polarity, and the electromechanical property is scrutinized by detecting of the lattice distortion using atomic scale strain analysis, and also by detecting the depolarized electric field using differential phase contrast technique.
View Article and Find Full Text PDFThe superconductor-insulator transition induced by film thickness control is investigated for the optimally doped cuprate superconductor LaSrCuO. Epitaxial thin films are grown on an almost exactly matched substrate LaAlO (001). Despite the wide thickness range of 6 nm to 300 nm, all films are grown coherently without significant relaxation of the misfit strain.
View Article and Find Full Text PDFThe requirements of multifunctionality in thin-film systems have led to the discovery of unique physical properties and degrees of freedom, which exist only in film forms. With progress in growth techniques, one can decrease the film thickness to the scale of a few nanometers (∼nm), where its unique physical properties are still pronounced. Among advanced ultrathin film systems, ferroelectrics have generated tremendous interest.
View Article and Find Full Text PDFPiezoresponse force microscopy (PFM) is a widely used tool for ferroelectric domain imaging. Lateral PFM (LPFM) utilizes the torsional vibration mode of a probe cantilever; it can distinguish ferroelectric domains having different polarizations with respect to the axis perpendicular to the cantilever, but it is blind to the parallel axis innately. We introduce a high-resolution angle-resolved-LPFM technique that is capable of visualizing full two-dimensional in-plane piezoresponse vector fields.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
We investigate the effect of variable uniaxial tensile strain on the evolution of 71° ferroelastic domains in (001)-oriented epitaxial BiFeO (BFO) thin films using piezoresponse force microscopy (PFM). For this purpose, a newly designed bending stage has been employed, which allows tensile bending as wells as in situ PFM characterization. In situ PFM imaging reveals polarization-strain correlations at the nanoscale.
View Article and Find Full Text PDFTopological defects in matter behave collectively to form highly non-trivial structures called topological textures that are characterised by conserved quantities such as the winding number. Here we show that an epitaxial ferroelectric square nanoplate of bismuth ferrite subjected to a large strain gradient (as much as 10 m) associated with misfit strain relaxation enables five discrete levels for the ferroelectric topological invariant of the entire system because of its peculiar radial quadrant domain texture and its inherent domain wall chirality. The total winding number of the topological texture can be configured from - 1 to 3 by selective non-local electric switching of the quadrant domains.
View Article and Find Full Text PDFThe ultimate challenge for the development of new multiferroics with enhanced properties lies in achieving nanoscale control of the coupling between different ordering parameters. In oxide-based multiferroics, substitutional cation dopants offer the unparalleled possibility to modify both the electric and magnetic properties at a local scale. Herein it is demonstrated the formation of a dopant-controlled polar pattern in BiFeO leading to the spontaneous instauration of periodic polarization waves.
View Article and Find Full Text PDFFerroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E). Here, we present a promising FPV based on hexagonal YbFeO (h-YbFO) thin-film heterostructure by exploiting its narrow E.
View Article and Find Full Text PDFWe investigate the ferroelectric state of a tetragonal BiFeO thin film grown on a LaAlO (001) substrate using an optical second harmonic generation (SHG) microscope. Whereas the ferroelectric state of this material hosts nanometer-sized domains which again form micrometer-sized domains of four different configurations, we could figure out the characteristic features of each domain from the SHG mapping with various sizes of the probe beam, i.e.
View Article and Find Full Text PDFIn this study, we report the effect of doping in morphotropic BiFeO (BFO) thin films on mechanical properties, revealing variations in the elasticity across the competing phases and their boundaries. Spectroscopic force-distance (F-D) curves and force mapping images by AFM are used to characterize the structure and elastic properties of three BFO thin-film candidates (pure-BFO, Ca-doped BFO, La-doped BFO). We show that softening behavior is observed in isovalent La-doped BFO, whereas hardening is seen in aliovalent Ca-doped BFO.
View Article and Find Full Text PDFThe phase separation of multiple competing structural/ferroelectric phases has attracted particular attention owing to its excellent electromechanical properties. Little is known, however, about the strain-gradient-induced electronic phenomena at the interface of competing structural phases. Here, we investigate the polymorphic phase interface of bismuth ferrites using spatially resolved photocurrent measurements, present the observation of a large enhancement of the anisotropic interfacial photocurrent by two orders of magnitude, and discuss the possible mechanism on the basis of the flexoelectric effect.
View Article and Find Full Text PDFMechanical switching can be used to form phase-transformed areas in mixed-phase bismuth ferrite thin films, which might be exploited to yield various soft elastic areas with greatly reduced Young's modulus on the nanoscale. Due to the mechanically susceptible nature of morphotropic phase boundaries in multiferroics, combined elastic control of electronic, magnetic, and ferroelectric properties becomes possible.
View Article and Find Full Text PDFAmongst the most interesting phenomena in correlated oxide systems are the doping-driven competitions between energetically similar ground states found in, e.g., high-Tc superconductors and colossal magnetoresistance manganites.
View Article and Find Full Text PDF