Publications by authors named "Chan Yong Lee"

Lumazine protein from marine luminescent bacteria of species bind with very high affinity to the fluorescent chromophore 6,7-dimethyl-8-ribitylumazine. The light emission of bacterial luminescent systems is used as a sensitive, rapid, and safe assay for an ever-increasing number of biological systems. Plasmid pRFN4, containing the genes encoding riboflavin from the operon of , was designed for the overproduction of lumazine.

View Article and Find Full Text PDF

Bee venom is a medicinal product that is widely used in traditional therapies owing to its excellent anti-inflammatory activity. However, the use of bee venom has shown adverse effects. Therefore, there is a need for research that can remove the cytotoxicity of bee venom and enhance its efficacy.

View Article and Find Full Text PDF

Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. The pRFN4 plasmid, which contains the riboflavin synthesis genes from , was originally designed for overproduction of the fluorescent ligand of 6,7-dimethyl 8-ribityllumazine. To provide the basis for a biosensor based on the gene from bioluminescent bacteria of , the gene coding for N-terminal domain half of the lumazine protein extending to amino acid 112 (N-LumP) and the gene for whole lumazine protein (W-LumP) from were introduced by polymerase chain reaction (PCR) and ligated into pRFN4 vector, to construct the recombinant plasmids of N-P-pRFN4 and W-P-pRFN4 as well as their modified plasmids by insertion of the promoter.

View Article and Find Full Text PDF

A fundamental question in biology is how vertebrates evolved and differ from invertebrates, and little is known about differences in the regulation of translation in the two systems. Herein, we identify a threonyl-tRNA synthetase (TRS)-mediated translation initiation machinery that specifically interacts with eIF4E homologous protein, and forms machinery that is structurally analogous to the eIF4F-mediated translation initiation machinery via the recruitment of other translation initiation components. Biochemical and RNA immunoprecipitation analyses coupled to sequencing suggest that this machinery emerged as a gain-of-function event in the vertebrate lineage, and it positively regulates the translation of mRNAs required for vertebrate development.

View Article and Find Full Text PDF

A growing body of evidence shows that the electrical stimulation of the vagus nerve can improve mental illness including depression. Here, we investigated whether the vagus nerve stimulation (VNS) is involved in regulating the responsiveness of hippocampal neurons in rats under chronic restraint stress (CRS). c-Fos protein signals were detected 2 hr after VNS in 5-HT receptor-positive neurons in the dorsal raphe nucleus (DRN) as well as in the nucleus tractus solitarius (NTS).

View Article and Find Full Text PDF

Background: So-ochim-tang-gamibang (SOCG) is a decoction formula which has been used to improve mental activity in traditional Korean medicine. The present study was performed to evaluate whether the treatment of SOCG was involved in activating hippocampal neurons in mice which were subjected to chronic restraint stress (CRS).

Methods: Mice were subjected to CRS for 2 weeks to induce depressive-like behaviors.

View Article and Find Full Text PDF

Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36).

View Article and Find Full Text PDF

Shiga toxins (Stxs) produced by Shiga toxin-producing Escherichia coli (STEC) strains are major virulence factors that cause fatal systemic complications, such as hemolytic uremic syndrome and disruption of the central nervous system. Although numerous studies report proinflammatory responses to Stx type 1 (Stx1) or Stx type 2 (Stx2) both in vivo and in vitro, none have examined dynamic immune regulation involving cytokines and/or unknown inflammatory mediators during intoxication. Here, we showed that enzymatically active Stxs trigger the dissociation of lysyl-tRNA synthetase (KRS) from the multi-aminoacyl-tRNA synthetase complex in human macrophage-like differentiated THP-1 cells and its subsequent secretion.

View Article and Find Full Text PDF

In addition to the active cysteines located at positions 32 and 35 in humans, mammalian cytosolic thioredoxin (TRX) possesses additional conserved cysteine residues at positions 62, 69, and 73. These non-canonical cysteine residues, that are distinct from prokaryotic TRX and also not found in mammalian mitochondrial TRX, have been implicated in biological functions regulating signal transduction pathways via their post-translational modifications. Here, we describe for the first time the structure of a fully oxidized TRX.

View Article and Find Full Text PDF

Riboflavin synthase catalyzes the transfer of a four-carbon fragment between two molecules of the substrate, 6,7-dimethyl-8-ribityllumazine, resulting in the formation of riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Earlier, a pentacyclic adduct formed from two substrate molecules was shown to be a catalytically competent intermediate, but the mechanism of its formation is still poorly understood. The present study shows that the recombinant N-terminal domain of riboflavin synthase from Escherichia coli interacts specifically with the exomethylene-type anion of 6,7-dimethyl-8-ribityllumazine but not with any of the tricyclic adduct-type anions that dominate the complex anion equilibrium in aqueous solution.

View Article and Find Full Text PDF

Proliferation of Schwann cells in the injured peripheral nerve supports axonal regeneration, and physical training in experimental animals has been shown to promote nerve regeneration. Extracellular signal-regulated kinase 1/2 (ERK1/2) activity can mediate neuronal responses to lesion signals, but its role in non-neuronal cells in the injured area is largely unknown. Here we report that treadmill training (TMT) facilitates axonal regeneration via the upregulation of phospho-ERK1/2 protein levels in Schwann cells in the injured sciatic nerve.

View Article and Find Full Text PDF

Lumazine protein is believed to serve as an optical transponder in bioluminescence emission by certain marine bacteria. Sequence arguments suggest that the protein comprises two similarly folded riboflavin synthase-type domains, but earlier work also suggested that only one domain binds 6,7-dimethyl-8-ribityllumazine (DMRL). We show that the replacement of serine-48 or threonine-50 in the N-terminal domain of lumazine protein of Photobacterium leiognathi modulates the absorbance and fluorescence properties of bound DMRL or riboflavin.

View Article and Find Full Text PDF

Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7- dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains.

View Article and Find Full Text PDF

[graph: see text] Lumazine proteins of luminescent bacteria are paralogs of riboflavin synthase which are devoid of catalytic activity but bind the riboflavin synthase substrate, 6,7-dimethyl-8-ribityllumazine, with high affinity and are believed to serve as optical transponders for bioluminescence emission. Lumazine protein of Photobacterium leiognathi was expressed in a recombinant Escherichia coli host and was reconstituted with mixtures (random libraries) of 13C-labeled isotopologs of 6,7-dimethyl-8-ribityllumazine or riboflavin that had been prepared by biotransformation of [U-(13)C6]-, [1-(13)C1]-, [2-(13)C1]-, and [3-(13)C1]glucose. 13C NMR analysis of the protein/ligand complexes afforded the assignments of the 13C NMR chemical shifts for all carbon atoms of the protein-bound ligands by isotopolog abundance editing.

View Article and Find Full Text PDF

Investigation of the expression of the riboflavin (rib) genes, which are found immediately downstream of luxG in the lux operon in Photobacterium phosphoreum, provides more information relevant to the evolution of bioluminescence, as well as to the regulation of supply of flavin substrate for bacterial bioluminescence reactions. In order to answer the question of whether or not the transcriptions of lux and rib genes are integrated, a transcriptional termination assay was performed with P. phosphoreum DNA, containing the possible stem-loop structures, located in the intergenic region of luxF and luxE (OmegaA), of luxG and ribE (OmegaB), and downstream of ribA (OmegaC).

View Article and Find Full Text PDF

An Escherichia coli strain engineered for expression of the ribABGH genes of Bacillus subtilis was shown to produce 100 mg of the riboflavin precursor 6,7-dimethyl-8-ribityllumazine per liter of minimal medium. Growth of the recombinant strain in medium supplemented with [U-13C6]glucose and/or 15NH4Cl as single sources of carbon and/or nitrogen afforded 6,7-dimethyl-8-ribityllumazine universally labeled with 13C and/or 15N. The yield of [U-13C13]-6,7-dimethyl-8-ribityllumazine based on [U-13C6]glucose was 25 mg/g.

View Article and Find Full Text PDF