One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Semitransparent flexible photovoltaic cells are advantageous for effective use of solar energy in many areas such as building-integrated solar-power generation and portable photovoltaic chargers. We report semitransparent and flexible organic solar cells (FOSCs) with high aperture, composed of doped graphene layers, ZnO, P3HT:PCBM, and PEDOT:PSS as anode/cathode transparent conductive electrodes (TCEs), electron transport layer, photoactive layer, and hole transport layer, respectively, fabricated based on simple solution processing. The FOSCs do not only harvest solar energy from ultraviolet-visible region but are also less sensitive to near-infrared photons, indicating semitransparency.
View Article and Find Full Text PDFRecently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ∼1.
View Article and Find Full Text PDFWe first employ highly-stable and -flexible (CFSO)NH-doped graphene (TFSA/GR) and GR-encapsulated TFSA/GR (GR/TFSA/GR) transparent conductive electrodes (TCEs) prepared on polyethylene terephthalate substrates for flexible organic solar cells (OSCs). Compared to conventional indium tin oxide (ITO) TCEs, the TFSA-doped-GR TCEs show higher optical transmittance and larger sheet resistance. The TFSA/GR and GR/TFSA/GR TCEs show work functions of 4.
View Article and Find Full Text PDFOne of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET), referred to as the transfer of the photon energy absorbed in donor to acceptor, has received much attention as an important physical phenomenon for its potential applications in optoelectronic devices as well as for the understanding of some biological systems. If one-atom-thick graphene is used for donor or acceptor, it can minimize the separation between donor and acceptor, thereby maximizing the FRET efficiency (EFRET). Here, we report first fabrication of a FRET system composed of silica nanoparticles (SNPs) and graphene quantum dots (GQDs) as donors and acceptors, respectively.
View Article and Find Full Text PDFResonance effects in the thickness-dependent ultrafast carrier and phonon dynamics of topological insulator Bi2Se3 are found irrespective of the kind of substrate by measuring thickness-dependent abrupt changes of pump-probe differential-reflectivity signals (ΔR/R) from Bi2Se3 thin films on four different substrates of poly- and single-crystalline (sc-) ZnO, sc-GaN and SiO2. The absolute peak intensity of the ΔR/R is maximized at ∼t C (6 ∼ 9 quintuple layers), which is not directly related to but is very close to the critical thickness below which the energy gap opens. The intensities of the two phonon modes deduced from the oscillatory behaviors superimposed on the ΔR/R profiles are also peaked at ∼t C for the four kinds of substrates, consistent with the thickness-dependent Raman-scattering behaviors.
View Article and Find Full Text PDFGraphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism.
View Article and Find Full Text PDFGraphene quantum dots (GQDs) have received much attention due to their novel phenomena of charge transport and light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Thus, the demonstration of photodetection gain with GQDs would be the basis for a plenty of applications not only as a single-function device in detecting optical signals but also a key component in the optoelectronic integrated circuits.
View Article and Find Full Text PDFIntensive studies have recently been performed on graphene-based photodetectors, but most of them are based on field effect transistor structures containing mechanically exfoliated graphene, not suitable for practical large-scale device applications. Here we report high-efficient photodetector behaviours of chemical vapor deposition grown all-graphene p-n vertical-type tunnelling diodes. The observed photodetector characteristics well follow what are expected from its band structure and the tunnelling of current through the interlayer between the metallic p- and n-graphene layers.
View Article and Find Full Text PDFGraphene field-effect transistors (GFETs) were fabricated by photolithography and lift-off processes, and subsequently heated in a rapid-thermal-annealing (RTA) apparatus at temperatures (T(A)) from 200 to 400 °C for 10 min under nitrogen to eliminate the residues adsorbed on the graphene during the GFET fabrication processes. Raman-scattering, current-voltage (I-V), and sheet resistance measurements showed that, after annealing at 250 °C, graphene in GFETs regained its intrinsic properties, such as very small intensity ratios of D to G and G to 2D Raman bands, a symmetric I-V curve with respect to ~0 V, and very low sheet resistance. Atomic force microscopy images and height profiles also showed that the surface roughness of graphene was almost minimized at T(A) = 250 °C.
View Article and Find Full Text PDFFormation and characterization of graphene p-n junctions are of particular interest because the p-n junctions are used in a wide variety of electronic/photonic systems as building blocks. Graphene p-n junctions have been previously formed by using several techniques, but most of the studies are based on lateral-type p-n junctions, showing no rectification behaviors. Here, we report a new type of graphene p-n junction.
View Article and Find Full Text PDF