Publications by authors named "Chan H See"

The study underscores the urgent need for sustainable waste management by focusing on circular economy principles, government regulations, and public awareness to combat ecological threats, pollution, and climate change effects. It explores extracting nanocellulose from waste streams such as textile, paper, agricultural matter, wood, animal, and food waste, providing a detailed process framework. The emphasis is on waste-derived nanocellulose as a promising material for eco-friendly products.

View Article and Find Full Text PDF

In the ever-evolving landscape of modern wireless communication systems, the escalating demand for seamless connectivity has propelled the imperative for avant garde, versatile, and high-performance antennas to unprecedented heights [...

View Article and Find Full Text PDF

In the design of phase shifters, the modeling equations are too complicated and require some approximations to be derived correctly by hand. In response to this problem, this paper presents a generalized concept, algorithm, and MATLAB code that provide the exact modeling equations of the transmission parameters and the scattering parameters of any 90° wideband stub-loaded phase shifter. The proposed code gives the modeling equations in term of variables for any number of stubs and characteristic impedance value by utilizing the symbol-based analysis of the MATLAB code.

View Article and Find Full Text PDF

In this paper, a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2 × 2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabricated on Rogers RT/Duroid high-frequency substrate with a dielectric constant of 2.

View Article and Find Full Text PDF

This paper introduces a multi-input multiple-output (MIMO) antenna array system that provides improved radiation diversity for multi-standard/multi-mode 5G communications. The introduced MIMO design contains four pairs of miniaturized self-complementary antennas (SCAs) fed by pairs of independently coupled structures which are symmetrically located at the edge corners of the smartphone mainboard with an overall size of 75 × 150 (mm). Hence, in total, the design incorporates four pairs of horizontally and vertically polarized resonators.

View Article and Find Full Text PDF

This paper focuses on designing a dual-band, bandpass filter configuration inspired by glide-symmetric structures in a single plane. Geometry configuration of elliptical slots on both sides of single substrate generally affects electromagnetic fields as well as rejection bands. Easy fabrication with misalignment avoidance during assembly procedure unlike conventional structures based on gap waveguide technology, make them appropriate to use in electromagnetic devices.

View Article and Find Full Text PDF

In this paper, a high-performance antenna-on-chip (AoC) is implemented on gallium arsenide (GaAs) wafer based on the substrate integrated waveguide (SIW) and metasurface (MTS) technologies for terahertz band applications. The proposed antenna is constructed using five stacked layers comprising metal-GaAs-metal-GaAs-metal. The conductive electromagnetic radiators are implemented on the upper side of the top GaAs layer, which has a metallic ground-plane at its underside.

View Article and Find Full Text PDF

An innovative off-chip antenna (OCA) is presented that exhibits high gain and efficiency performance at the terahertz (THz) band and has a wide operational bandwidth. The proposed OCA is implemented on stacked silicon layers and consists of an open circuit meandering line. It is shown that by loading the antenna with an array of subwavelength circular dielectric slots and terminating it with a metamaterial unit cell, its impedance bandwidth is enhanced by a factor of two and its gain on average by about 4 dB.

View Article and Find Full Text PDF

Millimetre-wave frequencies are promising for sensitive detection of glucose levels in the blood, where the temperature effect is insignificant. All these features provide the feasibility of continuous, portable, and accurate monitoring of glucose levels. This paper presents a metamaterial-inspired resonator comprising five split-rings to detect glucose levels at 24.

View Article and Find Full Text PDF

A novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna's footprint.

View Article and Find Full Text PDF

In this paper, single-element and MIMO microstrip antenna with two pairs of unequal slits is proposed as a circularly polarized antenna with negligible back radiation for 5G mid-band handsets. The unequal pairs of slits are engraved on the antenna patch to guarantee the presence of the circular polarization (CP). The proximity-coupled feeding technique is used to excite the proposed microstrip antenna in order to provide larger antenna -10 dB bandwidth which approaches 10.

View Article and Find Full Text PDF

An offset quad-element, two-port, high-gain, and multiband multiple-input multiple-output (MIMO) planar antenna based on a log-periodic dipole array (LPDA) for Ku/K-band wireless communications is proposed, in this paper. A single element antenna has been designed starting from Carrel's theory and then optimized with a 50-Ω microstrip feed-line with two orthogonal branches that results mainly in a broadside radiation pattern and improves diversity parameters. For experimental confirmation, the designed structure is printed on an RT-5880 substrate with a thickness of 1.

View Article and Find Full Text PDF

The demand for high data rate transfer and large capacities of traffic is continuously growing as the world witnesses the development of the fifth generation (5G) of wireless communications with the fastest broadband speed yet and low latency [...

View Article and Find Full Text PDF

Matching the antenna's impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna's radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end.

View Article and Find Full Text PDF

This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements.

View Article and Find Full Text PDF

The paper demonstrates an effective technique to significantly enhance the bandwidth and radiation gain of an otherwise narrowband composite right/left-handed transmission-line (CRLH-TL) antenna using a non-Foster impedance matching circuit (NF-IMC) without affecting the antenna's stability. This is achieved by using the negative reactance of the NF-IMC to counteract the input capacitance of the antenna. Series capacitance of the CRLH-TL unit-cell is created by etching a dielectric spiral slot inside a rectangular microstrip patch that is grounded through a spiraled microstrip inductance.

View Article and Find Full Text PDF

A compact fabric antenna structure integrated with electromagnetic bandgap structures (EBGs) covering the desired frequency spectrum between 2.36 GHz and 2.40 GHz for Medical Body-Area Networks (MBANs), is introduced.

View Article and Find Full Text PDF

Combined sewer overflow structures (CSO) play an important role in sewer networks. When the local capacity of a sewer system is exceeded during intense rainfall events, they act as a "safety valve" and discharge excess rainfall run-off and wastewater directly to a natural receiving water body, thus preventing widespread urban flooding. There is a regulatory requirement that solids in CSO spills must be small and their amount strictly controlled.

View Article and Find Full Text PDF

Analogue-to-digital converters (ADC) using oversampling technology and the Σ-∆ modulation mechanism are widely applied in digital audio systems. This paper presents an audio modulator with high accuracy and low power consumption by using a discrete second-order feedforward structure. A 5-bit successive approximation register (SAR) quantizer is integrated into the chip, which reduces the number of comparators and the power consumption of the quantizer compared with flash ADC-type quantizers.

View Article and Find Full Text PDF

In this paper an automatic adaptive antenna impedance tuning algorithm is presented that is based on quantum inspired genetic optimization technique. The proposed automatic quantum genetic algorithm (AQGA) is used to find the optimum solution for a low-pass passive T-impedance matching LC-network inserted between an RF transceiver and its antenna. Results of the AQGA tuning method are presented for applications across 1.

View Article and Find Full Text PDF

A feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11 × 11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches.

View Article and Find Full Text PDF

This paper presents a novel on-chip antenna using standard CMOS-technology based on metasurface implemented on two-layers polyimide substrates with a thickness of 500 μm. The aluminium ground-plane with thickness of 3 μm is sandwiched between the two-layers. Concentric dielectric-rings are etched in the ground-plane under the radiation patches implemented on the top-layer.

View Article and Find Full Text PDF

The internal insulation condition of capacitor voltage transformers (CVTs) is a key influence factor that affects their measurement performance and safe operation. However, the internal insulation would age along with long-time operation and degrade due to environmental factors, and once the insulation degradation grows, serious damage and even explosion may happen in CVTs; hence, it is necessary to monitor the internal insulation condition of CVTs, and the fault type and fault degree need to be identified. In this paper, a data-driven internal insulation condition identification method for CVTs is proposed.

View Article and Find Full Text PDF