This study demonstrated the potential of 50 nm PEGylated Si NPs for high-resolution Si MR imaging, emphasizing their biocompatibility and water dispersibility. The acquisition of Si MR images using the lowest reported dose after subcutaneous and intraperitoneal administration opens new avenues for future Si MR studies.
View Article and Find Full Text PDFThe potential use of alanine as an MRI contrast agent was investigated. The relaxation properties of alanine solutions were measured at 9.4 T.
View Article and Find Full Text PDFGlutamine provides carbon and nitrogen for macromolecular synthesis and participates in adenosine triphosphate (ATP) generation, anabolic metabolism, redox homeostasis, cell signaling, and cancer stem cell (CSC) metabolism. New treatment strategies targeting glutamine metabolism in cancer have emerged recently. We previously reported the magnetic resonance imaging (MRI) assessment of glutamine uptake by tumors and activated glutamine metabolism in CSC.
View Article and Find Full Text PDFSilicon particles have garnered attention as promising biomedical probes for hyperpolarized Si magnetic resonance imaging and spectroscopy. However, due to the limited levels of hyperpolarization for nanosized silicon particles, microscale silicon particles have primarily been the focus of dynamic nuclear polarization (DNP) applications, including magnetic resonance imaging (MRI). To address these current challenges, we developed a facile synthetic method for partially Si-enriched porous silicon nanoparticles (NPs) (160 nm) and examined their usability in hyperpolarized Si MRI agents with enhanced signals in spectroscopy and imaging.
View Article and Find Full Text PDFPurpose: The potential of L-glutamine as a T exchange contrast agent in MRI was investigated.
Methods: The T relaxation rate of L-glutamine solutions prepared in various concentrations was measured at 9.4 T.
Purpose: To compare gadolinium retention in the abdominal organs after administration of gadoxetic acid disodium, a liver-specific contrast agent, compared to gadodiamide and gadobutrol.
Methods: Three types of gadolinium-based contrast agents (GBCAs) were administered to rats. A single (gadodiamide and gadobutrol, 0.
Purpose: To test the feasibility of using the SPICE (SPectroscopic Imaging by exploiting spatiospectral CorrElation) technique, which uses the partial separability of spectroscopic data, for high resolution hyperpolarized (HP) C spectroscopic imaging.
Methods: Numerical simulations were performed to investigate the impact of transient HP signals on SPICE reconstruction. Furthermore, spectroscopic imaging exams from SPICE and conventional EPSI (echo-planar spectroscopic imaging) were simulated for comparison.
Purpose: To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized C chemical shift imaging (CSI) of mouse liver at 9.4 T.
Methods: The trade-off between the amount of flow suppression using bipolar gradients and T2* effect from static spins was simulated.
Proton magnetic resonance spectroscopy has emerged as one of the most informative neuroimaging modalities for studying the effect of HIV infection in the brain, providing surrogate markers by which to assess disease progression and monitor treatment. Reductions in the level of N-Acetylaspartate and N-Acetylaspartate/creatine are established markers of neuronal injury or loss. However, the biochemical basis of altered creatine levels in neuroAIDS is not well understood.
View Article and Find Full Text PDFNon-human primates are often used as preclinical model systems for (mostly diffuse or multi-focal) neurological disorders and their experimental treatment. Due to cost considerations, such studies frequently utilize non-destructive imaging modalities, MRI and proton MR spectroscopy ((1) H MRS). Cost may explain why the inter- and intra-animal reproducibility of the (1) H MRS observed brain metabolites, are not reported.
View Article and Find Full Text PDFBackground: Despite the advent of highly active anti-retroviral therapy (HAART), HIV-associated neurocognitive disorders continue to be a significant problem. In efforts to understand and alleviate neurocognitive deficits associated with HIV, we used an accelerated simian immunodeficiency virus (SIV) macaque model of NeuroAIDS to test whether minocycline is neuroprotective against lentiviral-induced neuronal injury.
Methodology/principal Findings: Eleven rhesus macaques were infected with SIV, depleted of CD8+ lymphocytes, and studied until eight weeks post inoculation (wpi).
The accuracy of metabolic quantification in MR spectroscopy is limited by the unknown radiofrequency field and T(1). To address both issues in proton ((1)H) MR spectroscopy, we obtained radiofrequency field-corrected T(1) maps of N-acetylaspartate, choline, and creatine in five healthy rhesus macaques at 3 T. For efficient use of the 4 hour experiment, we used a new three-point protocol that optimizes the precision of T(1) in three-dimensional (1)H-MR spectroscopy localization for extensive, approximately 30%, brain coverage at 0.
View Article and Find Full Text PDFThe structure and metabolism of the rhesus macaque brain, an advanced model for neurologic diseases and their treatment response, is often studied noninvasively with MRI and (1)H-MR spectroscopy. Due to the shorter transverse relaxation time (T(2)) at the higher magnetic fields these studies favor, the echo times used in (1)H-MR spectroscopy subject the metabolites to unknown T(2) weighting, decreasing the accuracy of quantification which is key for inter- and intra-animal comparisons. To establish the "baseline" (healthy animal) T(2) values, we mapped them for the three main metabolites' T(2)s at 3 T in four healthy rhesus macaques and tested the hypotheses that their mean values are similar (i) among animals; and (ii) to analogs regions in the human brain.
View Article and Find Full Text PDFBackground: In vivo proton magnetic resonance spectroscopy (1H-MRS) studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection.
Results: Changes in the N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), creatine (Cr) and glutamine/glutamate (Glx) resonances were quantified both in absolute terms and relative to the creatine resonance.
Dynamic nuclear polarization is combined with temperature-jump methods to develop a new 2D 13C-13C NMR experiment that yields a factor of 100-170 increase in sensitivity. The polaization step is performed at 100 K, and the sample is subsequently melted with a 10.6 microm laser pulse to yield a sample with highly polarized 13C spins.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (microw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (gamma(e)gamma(l)), being approximately 660 for protons.
View Article and Find Full Text PDFIEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc
June 2007
Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology.
View Article and Find Full Text PDFRecently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers.
View Article and Find Full Text PDFIn a previous publication, we described the use of biradicals, in that case two TEMPO molecules tethered by an ethylene glycol chain of variable length, as polarizing agents for microwave driven dynamic nuclear polarization (DNP) experiments. The use of biradicals in place of monomeric paramagnetic centers such as TEMPO yields enhancements that are a factor of approximately 4 larger (epsilon approximately 175 at 5 T and 90 K) and concurrently the concentration of the polarizing agent is a factor of 4 smaller (10 mM electron spins), reducing the residual electron nuclear dipole broadening. In this paper we describe the synthesis and characterization by EPR and DNP/NMR of an improved polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL).
View Article and Find Full Text PDFWe describe an experiment, in situ temperature jump dynamic nuclear polarization (TJ-DNP), that is demonstrated to enhance sensitivity in liquid-state NMR experiments of low-gamma spins--13C, 15N, etc. The approach consists of polarizing a sample at low temperature using high-frequency (140 GHz) microwaves and a biradical polarizing agent and then melting it rapidly with a pulse of 10.6 microm infrared radiation, followed by observation of the NMR signal in the presence of decoupling.
View Article and Find Full Text PDFSolid-state NMR studies of composite polymer electrolytes are reported. The materials consist of polyethylene oxide and an organic inorganic composite, together with a lithium salt, and are candidates for electrolytes in solid-state lithium ion batteries. Silicon and aluminum MAS and multiple quantum MAS are used to characterize the network character of the organic-inorganic composite, and spin diffusion measurements are used to determine the nanostructure of the polymer/composite blending.
View Article and Find Full Text PDF