Publications by authors named "Chan Guo"

Combining photocatalytic reduction with organic synthetic oxidation in the same photocatalytic redox system can effectively utilize photoexcited electrons and holes from solar to chemical energy. Here, we stabilized 0D Au clusters on the substrate surface of Zn vacancies modified 2D ZnInS (ZIS-V) nanosheets by chemically bonding Au-S interaction, forming surfactant functionalized Au/ZIS-V photocatalyst, which can not only synergistic accelerate the selective oxidation of phenylcarbinol to value-added products coupled with clean energy hydrogen production but also further drive photocatalytic CO-to-CO conversion. An internal electric field of Au/ZIS-V ohmic junction and Zn vacancies synchronously promote the photoexcited charge carrier separation and transfer to optimized active sites for redox reactions.

View Article and Find Full Text PDF

Aerogel-based composites, renowned for their three-dimensional (3D) network architecture, are gaining increasing attention as lightweight electromagnetic (EM) wave absorbers. However, attaining high reflection loss, broad effective absorption bandwidth (EAB), and ultrathin thickness concurrently presents a formidable challenge, owing to the stringent demands for precise structural regulation and incorporation of magnetic/dielectric multicomponents with synergistic loss mechanisms within the 3D networks. In this study, we successfully synthesized a 3D hierarchical porous FeO/MoS/rGO/TiCT MXene (FMGM) composite aerogel via directional freezing and subsequent heat treatment processes.

View Article and Find Full Text PDF

A sub-eutectic high-entropy alloy composed of CoCrFeNiNb was prepared using a combination of mechanical powder mixing and selective laser melting (SLM). The mechanical properties of the alloy were enhanced by employing an interlayer laser remelting process. This study demonstrates the feasibility of using mechanical mixing and SLM to form an CoCrFeNiNb alloy.

View Article and Find Full Text PDF

Bimetallic alloy nanoparticles have garnered substantial attention for diverse catalytic applications owing to their abundant active sites and tunable electronic structures, whereas the synthesis of ultrafine alloy nanoparticles with atomic-level homogeneity for bulk-state immiscible couples remains a formidable challenge. Herein, we present the synthesis of RuCo solid-solution alloy nanoparticles (ca. 2 nm) across the entire composition range, for highly efficient, durable, and selective CO hydrogenation to CH under mild conditions.

View Article and Find Full Text PDF

Developing large-scale hydrogels with high tensile strength and robust mechanical properties is an intricate challenge of great industrial significance. In this study, we demonstrate an efficient method for producing nanocomposite hydrogels with extraordinary mechanical properties. Our approach involves a two-step process: an initial stage of pre-cross-linking boron nitride (BN)-enriched pre-gel sodium alginate, followed by cross-linking with metal ions.

View Article and Find Full Text PDF

With the continuous reduction of chip size, fluxless soldering has brought attention to high-density, three-dimensional packaging. Although fluxless soldering technology with formic acid (FA) atmosphere has been presented, few studies have examined the effect of the Pt catalytic, preheating time, and soldering pad on FA soldering for the Sn-58Bi solder. The results have shown that the Pt catalytic can promote oxidation-reduction and the formation of a large pore in the Sn-58Bi/Cu solder joint, which causes a decrease in shear strength.

View Article and Find Full Text PDF

Carbon dioxide (CO) hydrogenation to methane (CH) is regarded as a promising approach for CO utilization, whereas achieving desirable conversion efficiency under mild conditions remains a significant challenge. Herein, we have identified ultrasmall Ru nanoparticles (∼2.5 nm) anchored on MnCoO nanosheets as prospective photothermal catalysts for CO methanation at ambient pressure with light irradiation.

View Article and Find Full Text PDF

Achieving scalable synthesis of nanoscale transition-metal carbides (TMCs), regarded as substitutes for platinum-group noble metals, remains an ongoing challenge. Herein, a 100-g scale synthesis of single-phased cobalt carbide (Co C) through carburization of Co-based Prussian Blue Analog (Co-PBA) is reported in CO /H atmosphere under mild conditions (230 °C, ambient pressure). Textural property investigations indicate a successful preparation of orthorhombic-phased Co C nanomaterials with Pt-group-like electronic properties.

View Article and Find Full Text PDF

Two-dimensional nanomaterial-based membranes have earned broad attention because of their excellent capability of separation performance in a mixture that can challenge the conventional membrane materials utilized in the organic solvent nanofiltration (OSN) field. Boron nitride (BN) nanosheet membranes have displayed superb stability and separation ability in aqueous and organic solutions compared to the widely researched analogous graphene-based membranes; nevertheless, the concentration polarization of organic dye pollutants fades their separation performance and eclipses their potential adoption as a feasible technology. Herein, PDDA-modified BN (PBN) and sodium alginate-modified BN (SBN) nanosheet membranes with a thinner laminar structure are facially fabricated to improve the molecule separation performance compared to that of the pristine BN membrane.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen fertilization (NF) significantly boosts global crop production but can lead to high greenhouse gas (GHG) emissions, contributing to climate change.
  • A comprehensive analysis of 174 studies identified optimal NF rates for various crops, highlighting that proper management can enhance yield while minimizing GWP and GHGI.
  • The suggested nitrogen rates for optimal yield are 180 kg/ha for wheat, 150 kg/ha for maize, 130 kg/ha for rice, and 200 kg/ha for vegetables, with recommendations for specific application methods particularly in arid regions.
View Article and Find Full Text PDF

A key common problem for vertical few-layer graphene (VFLG) applications in electronic devices is the solution to grow on substrates. In this study, four kinds of substrates (silicon, stainless-steel, quartz and carbon-cloth) were examined to understand the mechanism of the nucleation and growth of VFLG by using the inductively-coupled plasma-enhanced chemical vapor deposition (ICPCVD) method. The theoretical and experimental results show that the initial nucleation of VFLG was influenced by the properties of the substrates.

View Article and Find Full Text PDF

The silver-promoted reaction of tertiary cyclobutanols with N-methoxypyridinium salts enables the efficient synthesis of a range of C2-substituted pyridines. The overall process likely occurs by ring-opening (via β-scission) of the cyclobutoxy radical to generate the corresponding γ-keto alkyl radical that itself adds to the pyridinium salt. A wide range of tertiary cyclobutanols and N-methoxypyridinium salts are compatible with the reaction conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The growing global population is increasing food demand while also contributing to rising greenhouse gas emissions due to temperature increases.
  • Soil mulching (SM) is shown to boost crop yields (by about 21.84%) but also increases greenhouse gas emissions (by around 11.38%).
  • To reduce negative environmental impacts, specific mulching and irrigation practices are recommended for different crops and soil conditions, particularly for maize, wheat, and rice.
View Article and Find Full Text PDF

In this work, we performed a systematic study of the physical properties of amorphous Indium-Gallium-Zinc Oxide (a-IGZO) films prepared under various deposition pressures, O2/(Ar+O2) flow ratios, and annealing temperatures. X-ray reflectivity (XRR) and microwave photoconductivity decay (μ-PCD) measurements were conducted to evaluate the quality of a-IGZO films. The results showed that the process conditions have a substantial impact on the film densities and defect states, which in turn affect the performance of the final thin-film transistors (TFT) device.

View Article and Find Full Text PDF

The proto-oncogene c-Myc regulates multiple biological processes mainly through selectively activating gene expression. However, the mechanisms underlying c-Myc-mediated gene repression in the context of cancer remain less clear. This study aimed to clarify the role of PRMT5 in the transcriptional repression of c-Myc target genes in gastric cancer.

View Article and Find Full Text PDF

The development of wearable strain sensors for the human-machine interface has attracted considerable research interest. Most existing wearable strain sensors were incapable of simultaneously detecting strain amplitudes and directions, and they failed to fully record stretching vectors that occurred on the body. Graphene and graphene-derived materials have been utilized to construct wearable strain sensors with excellent electrical sensitivities.

View Article and Find Full Text PDF

Protein arginine methyltransferase 5 (PRMT5) is a member of the arginine methyltransferase protein family that critically mediates the symmetric dimethylation of Arg-3 at histone H4 (H4R3me2s) and is involved in many key cellular processes, including hematopoiesis. However, the post-translational modifications (PTMs) of PRMT5 that may affect its biological functions remain less well-understood. In this study, using MS analyses, we found that PRMT5 itself is methylated in human erythroleukemia Lys-562 cells.

View Article and Find Full Text PDF

Methylation of histone H4 lysine 20 (H4K20) has been associated with cancer. However, the functions of the histone methyltransferases that trigger histone H4K20 methylation in cancers, including suppressor of variegation 4-20 homolog 1 (Suv4-20h1), remain elusive. In the present study, it was demonstrated that the knockdown of the histone H4K20 methyltransferase Suv4-20h1 resulted in growth inhibition in chronic myeloid leukemia K562 cells.

View Article and Find Full Text PDF

A new protocol for amide-directed ortho and lateral C-H sodiation is enabled by sodium hydride (NaH) in the presence of either sodium iodide (NaI) or lithium iodide (LiI). The transient organosodium intermediates could be transformed into functionalized aromatic compounds.

View Article and Find Full Text PDF

Production of hemoglobin during development is tightly regulated. For example, expression from the human β-globin gene locus, comprising β-, δ-, ϵ-, and γ-globin genes, switches from ϵ-globin to γ-globin during embryonic development and then from γ-globin to β-globin after birth. Expression of human ϵ-globin in mice has been shown to ameliorate anemia caused by β-globin mutations, including those causing β-thalassemia and sickle cell disease, raising the prospect that reactivation of ϵ-globin expression could be used in managing these conditions in humans.

View Article and Find Full Text PDF

Sodium hydride (NaH) has been commonly used as a Brønsted base in chemical syntheses, while it has rarely been employed to add hydride (H(-) ) to unsaturated electrophiles. We previously developed a procedure to activate NaH through the addition of a soluble iodide source and found that the new NaH-NaI composite can effect even stereoselective nucleophilic hydride reductions of nitriles, imines, and carbonyl compounds. In this work, we report that mixing NaH with NaI or LiI in tetrahydrofuran (THF) as a solvent provides a new inorganic composite, which consists of NaI interspersed with activated NaH, as revealed by powder X-ray diffraction, and both solid-state NMR and X-ray photoelectron spectroscopies.

View Article and Find Full Text PDF

Sodium hydride (NaH) is widely used as a Brønsted base in chemical synthesis and reacts with various Brønsted acids, whereas it rarely behaves as a reducing reagent through delivery of the hydride to polar π electrophiles. This study presents a series of reduction reactions of nitriles, amides, and imines as enabled by NaH in the presence of LiI or NaI. This remarkably simple protocol endows NaH with unprecedented and unique hydride-donor chemical reactivity.

View Article and Find Full Text PDF

We have previously mapped a putative prostate cancer tumor-suppressor gene to a 1-2 Mb region of 12p12-13. Initial work to identify the tumor suppressor at this locus focused on candidates previously implicated in malignancy; however, mutational and methylation analyses failed to identify significant genomic events. An alternative approach is to use expression analysis to prioritize the genes within the region of interest.

View Article and Find Full Text PDF

A multigenic model of prostate cancer susceptibility has been proposed, in which common polymorphic variants of genes, such as the androgen and vitamin D receptor, contribute to tumorigenesis. The discovery of additional genetic factors that contribute to prostate cancer risk should provide opportunities for new approaches to the detection and treatment of this common malignancy. Herein, we examined single nucleotide polymorphic variants in the 3'-untranslated region of CDKN1A (p21(cip1)) and in codon 109 of CDKN1B (p27(kip1)) for association with advanced prostate cancer in a European-American population.

View Article and Find Full Text PDF