Photoactivated gas sensors that are fully integrated with micro light-emitting diodes (µLED) have shown great potential to substitute conventional micro/nano-electromechanical (M/NEMS) gas sensors owing to their low power consumption, high mechanical stability, and mass-producibility. Previous photoactivated gas sensors mostly have utilized ultra-violet (UV) light (250-400 nm) for activating high-bandgap metal oxides, although energy conversion efficiencies of gallium nitride (GaN) LEDs are maximized in the blue range (430-470 nm). This study presents a more advanced monolithic photoactivated gas sensor based on a nanowatt-level, ultra-low-power blue (λ = 435 nm) µLED platform (µLP).
View Article and Find Full Text PDFSuspended nanostructures play an important role in enhancing the performance of a diverse group of nanodevices. However, realizing a good arrangement and suspension for nanostructures of various shapes remains a significant challenge. Herein, a rapid and simple method for fabricating wafer-scale, highly uniform, well-arrayed suspended nanostructures nanowelding lithography is reported.
View Article and Find Full Text PDFPlasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment.
View Article and Find Full Text PDFWe analyze the interface trap states generated by the self-heating effect in flexible single-crystalline Si nanomembrane (sc-Si NM) transistors. Despite the excellent device performance (: ~61 mV/dec, : ~10, Nit: ~5 × 10 cm, eff: ~250 cm²/V·s) and mechanical flexibility ( ═ 1 mm) of sc-Si NM transistors on a polymer substrate, they are vulnerable to thermal reliability issues due to the poor thermal conductivity ( < 1 W/m·K) of the polymer substrate. Understanding the detailed mechanism driving heat-related device degradation is key to improving device reliability, life expectancy, and overall device performance.
View Article and Find Full Text PDFBackground: Recently, a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) to generate reactive oxygen species (ROS) and heat to kill cancer cells, respectively has attracted considerable attention because it gives synergistic effects on the cancer treatment by utilizing the radiation of nontoxic low-energy photons such as long wavelength visible light and near IR (NIR) penetrating into subcutaneous region. For the effective combination of the phototherapies, various organic photosensitizer-conjugated gold nanocomplexes have been developed, but they have still some disadvantages due to photobleaching and unnecessary energy transfer of the organic photosensitizers.
Results: In this study, we fabricated novel inorganic phototherapeutic nanocomplexes (Au NR-TiO NCs) by conjugating gold nanorods (Au NRs) with defective TiO nanoparticle clusters (d-TiO NP clusters) and characterized their optical and photothermal properties.
In this paper, we report on a confocal thermoreflectance imaging system that can examine the thermal characteristics of microelectronic devices by penetrating the backside of a device through the substrate. In this system, the local reflectivity variations due to heat generation in the device are measured point by point by a laser scanning confocal microscope capable of eliminating out-of-focus reflections and the thermoreflectance is extracted via Fourier-domain signal processing. In comparison to the conventional widefield thermoreflectance microscope, the proposed laser scanning confocal thermoreflectance microscope improves the thermoreflectance sensitivity by ~23 times and the spatial resolution by ~25% in backside thermoreflectance measurements.
View Article and Find Full Text PDFA new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this 'electrical activation', the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C.
View Article and Find Full Text PDFThermoreflectance microscopy is essential in understanding the unpredictable local heating generation that occurs during microelectronic device operation. However, temperature measurements of multi-layered semiconductor devices represent a challenge because the thermoreflectance coefficient is quite small and is dramatically changed by the optical interference inside transparent layers of the device. Therefore, we propose a spectroscopic thermoreflectance microscopy system using a systematic approach for improving the quantitative temperature measurement of multi-layered semiconductor devices.
View Article and Find Full Text PDF