Front Endocrinol (Lausanne)
December 2024
Background And Objective: Overweight and obesity affects millions of individuals worldwide and consequently represents a major public health concern. Individuals living with overweight and obesity have difficulty maintaining a low body weight due to known physiological mechanisms which prevent further weight loss and drive weight regain. In contrast, mechanisms which promote low body weight maintenance receive less attention and are largely unknown.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2022
For children who work, there has been little research into the intricate relationship between their home lives and their work lives and the implications that this relationship might hold for their psychosocial development and functioning. This cross-sectional study was conducted in the Amhara region, Ethiopia, between March and April 2020 on a sample of 1311 working children with the aim, in part, of exploring ways in which various dimensions of children's psychological wellbeing are influenced by their working conditions and their family contexts. In addition to collecting data on some personal traits, family relationships, home environments, and detailed occupational characteristics, we gathered information on psychosocial wellbeing using 22 items from the Instrument for the Psychosocial Assessment of Working Children (IPAC).
View Article and Find Full Text PDFInsulin resistance is a major public health burden that often results in other comorbidities including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and cardiovascular disease. An insulin sensitizer has the potential to become a disease-modifying therapy. It remains an unmet medical need to identify therapeutics that target the insulin signaling pathway to treat insulin resistance.
View Article and Find Full Text PDFMicroglia play a critical role in maintaining neural function. While microglial activity follows a circadian rhythm, it is not clear how this intrinsic clock relates to their function, especially in stimulated conditions such as in the control of systemic energy homeostasis or memory formation. In this study, we found that microglia-specific knock-down of the core clock gene, Bmal1, resulted in increased microglial phagocytosis in mice subjected to high-fat diet (HFD)-induced metabolic stress and likewise among mice engaged in critical cognitive processes.
View Article and Find Full Text PDFThe genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD.
View Article and Find Full Text PDFCircadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear.
View Article and Find Full Text PDFMetabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes.
View Article and Find Full Text PDFMutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2) and R531G (AMPKγ2), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 or AMPKγ2 leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype.
View Article and Find Full Text PDFBackground: Mouse transgenesis has provided the unique opportunity to investigate mechanisms underlying sodium kidney reabsorption as well as end organ damage. However, understanding mouse background and the experimental conditions effects on phenotypic readouts of engineered mouse lines such as blood pressure presents a challenge. Despite the ability to generate high sodium and chloride plasma levels during high-salt diet, observed changes in blood pressure are not consistent between wild-type background strains and studies.
View Article and Find Full Text PDFThe 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.
View Article and Find Full Text PDFObjective: Left-ventricular hypertrophy and interstitial fibrosis are the main pathophysiological factors of heart failure with preserved ejection fraction. Blockade of the serotonin 5-HT2B receptor (5-HT2BR) has been shown to reduce cardiac hypertrophy, oxidative stress, and extracellular cell matrix activation. In this study, we evaluated the effects of the 5-HT2BR blockade, on hemodynamic and cardiac remodeling, in spontaneously hypertensive rats (SHRs) that display a diastolic dysfunction with preserved ejection fraction.
View Article and Find Full Text PDFThe function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms.
View Article and Find Full Text PDFThe ALK (Anaplastic Lymphoma Kinase) gene encodes a tyrosine kinase receptor preferentially expressed in the central and peripheral nervous systems. A syndromic presentation associating congenital neuroblastoma with severe encephalopathy and an abnormal shape of the brainstem has been described in patients harbouring de novo germline F1174V and F1245V ALK mutations. Here, we investigated the phenotype of knock-in (KI) mice bearing the AlkF1178L mutation (F1174L in human).
View Article and Find Full Text PDFMetabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.
View Article and Find Full Text PDFTo identify the genes and pathways that underlie cardiovascular and metabolic phenotypes we performed an integrated analysis of a mouse C57BL/6JxA/J F2 (B6AF2) cross by relating genome-wide gene expression data from adipose, kidney, and liver tissues to physiological endpoints measured in the population. We have identified a large number of trait QTLs including loci driving variation in cardiac function on chromosomes 2 and 6 and a hotspot for adiposity, energy metabolism, and glucose traits on chromosome 8. Integration of adipose gene expression data identified a core set of genes that drive the chromosome 8 adiposity QTL.
View Article and Find Full Text PDF