Publications by authors named "Champeil P"

The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought.

View Article and Find Full Text PDF

P4-ATPases, also known as phospholipid flippases, are responsible for creating and maintaining transbilayer lipid asymmetry in eukaryotic cell membranes. Here, we use limited proteolysis to investigate the role of the N and C termini in ATP hydrolysis and auto-inhibition of the yeast flippase Drs2p-Cdc50p. We show that limited proteolysis of the detergent-solubilized and purified yeast flippase may result in more than 1 order of magnitude increase of its ATPase activity, which remains dependent on phosphatidylinositol 4-phosphate (PI4P), a regulator of this lipid flippase, and specific to a phosphatidylserine substrate.

View Article and Find Full Text PDF

Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes.

View Article and Find Full Text PDF

This report is a follow up of our previous paper (Lund, Orlowski, de Foresta, Champeil, le Maire and Møller (1989), J Biol Chem 264:4907-4915) showing that solubilization in detergent of a membrane protein may interfere with its long-term stability, and proposing a protocol to reveal the kinetics of such irreversible inactivation. We here clarify the fact that when various detergents are tested for their effects, special attention has of course to be paid to their critical micelle concentration. We also investigate the effects of a few more detergents, some of which have been recently advertised in the literature, and emphasize the role of lipids together with detergents.

View Article and Find Full Text PDF

Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases.

View Article and Find Full Text PDF

Structural and functional characterization of integral membrane proteins requires milligram amounts of purified sample. Unless the protein you are studying is abundant in native membranes, it will be critical to overexpress the protein of interest in a homologous or heterologous way, and in sufficient quantities for further purification. The situation may become even more complicated if you chose to investigate the structure and function of a complex of two or more membrane proteins.

View Article and Find Full Text PDF

P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required.

View Article and Find Full Text PDF

Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p.

View Article and Find Full Text PDF

Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep integral membrane proteins (MPs) water soluble. In this review, we discuss their structure and solution behavior; the way they associate with MPs; and the structure, dynamics, and solution properties of the resulting complexes. All MPs tested to date form water-soluble complexes with APols, and their biochemical stability is in general greatly improved compared with MPs in detergent solutions.

View Article and Find Full Text PDF

Exposure of sarcoplasmic reticulum membranes to 4-hydroxy-2-nonenal (HNE) resulted in inhibition of the maximal ATPase activity and Ca(2+) transport ability of SERCA1a, the Ca(2+) pump in these membranes. The concomitant presence of ATP significantly protected SERCA1a ATPase activity from inhibition. ATP binding and phosphoenzyme formation from ATP were reduced after treatment with HNE, whereas Ca(2+) binding to the high-affinity sites was altered to a lower extent.

View Article and Find Full Text PDF

Many membrane proteins become labile when they are solubilized by detergent. Here we show that the presence of high concentrations of glycyl betaine stabilizes one of these proteins, the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a), solubilized with nonionic detergents like n-dodecyl beta-d-maltopyranoside (DDM) or octaethylene glycol monododecyl ether (C(12)E(8)) which are commonly used for its purification or crystallization. Betaine at high concentrations might become useful as a stabilizing agent for detergent-solubilized membrane proteins, for instance during purification procedures or during the long periods of time required for crystallogenesis.

View Article and Find Full Text PDF

Rapid irreversible inactivation of Ca (2+)-free states of detergent-solubilized SERCA1a (sarco-endoplasmic reticulum calcium ATPase 1a) has so far prevented the use of Trp fluorescence for functional characterization of this ATPase after its solubilization in various detergents. Here we show that using 20-40% glycerol for protection makes this fluorescence characterization possible. Most of the ligand-induced Trp fluorescence changes previously demonstrated to occur for SERCA1a embedded in native sarcoplasmic reticulum membranes were observed in the combined presence of glycerol and detergent, although the results greatly depended on the detergent used, namely, octaethylene glycol mono- n-dodecyl ether (C 12E 8) or dodecyl maltoside (DDM).

View Article and Find Full Text PDF

Sarcoplasmic reticulum Ca(2+)-ATPase is an ion pump whose catalytic cycle includes the transient formation of an acyl phosphate at Asp(351), and fluorescein isothiocyanate is a covalent inhibitor of ATP binding to this pump, known to specifically derivatize Lys(515) in the nucleotide-binding site. It was previously found that an unusually stable, phosphorylated form of fluorescein-ATPase, with low fluorescence, is obtained following Ca (2+) loading with acetyl phosphate as energy source and then chelation with EGTA of Ca(2+) on the cytosolic side. Here we show that the phospho-linkage in this low fluorescent species is stable at alkaline pH, unlike the acyl phosphate at Asp(351).

View Article and Find Full Text PDF

In recent years crystal structures of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a), stabilized in various conformations with nucleotide and phosphate analogs, have been obtained. However, structural analysis of mutant forms would also be valuable to address key mechanistic aspects. We have worked out a procedure for affinity purification of SERCA1a heterologously expressed in yeast cells, producing sufficient amounts for crystallization and biophysical studies.

View Article and Find Full Text PDF

Ca2+-free crystals of sarcoplasmic reticulum Ca2+-ATPase have, up until now, been obtained in the presence of inhibitors such as thapsigargin (TG), bound to the transmembrane region of this protein. Here, we examined the consequences of such binding for the protein. We found that, after TG binding, an active site ligand such as beryllium fluoride can still bind to the ATPase and change the conformation or dynamics of the cytosolic domains (as revealed by the protection afforded against proteolysis), but it becomes unable to induce any change in the transmembrane domain (as revealed by the intrinsic fluorescence of the membranous tryptophan residues).

View Article and Find Full Text PDF

We studied the interaction of gamma-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH) with cadmium ions (Cd(2+)) by first performing classical potentiometric pH titration measurements and then turning to additional spectroscopic methods. To estimate the residual concentrations of free cadmium, we studied the competition of glutathione with a Cd(2+)-sensitive dye, either an absorbing dye (murexide) or a fluorescent one (FluoZin-1), and consistent results were obtained with the two dyes. In KCl-containing Tes, Mops, or Tris buffer at pH 7.

View Article and Find Full Text PDF

The recently determined crystal structure of the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a) with a bound ATP analogue (AMPPCP) reveals a compact state, similar to that found in the presence of ADP and aluminium fluoride. However, although the two Ca2+-binding sites in the membrane are known to be occluded in the latter state, in the AMPPCP-bound state the Ca2+-binding sites are not occluded under conditions with physiological levels of Mg2+ and Ca2+. It has been shown that the high concentration (10 mM) of Ca2+ used for crystallization (in the presence of Mg2+) may be responsible for the discrepancy.

View Article and Find Full Text PDF

The amount of detergent required for the solubilization of membrane proteins needs to be optimised as an excess may cause loss of activity and insufficiency may result in poor solubilization or heterogeneous samples. With sarcoplasmic reticulum Ca2+ -ATPase as an example we show by cross-linking that it can be misleading to choose the proper amount of detergent based on clarification of membrane suspensions, because clarification -as detected by turbidity measurements, for instance- precedes full protein solubilization as monomers. We demonstrate that to assess the extent of sample homogeneity at a given detergent/protein ratio, cross-linking followed by HPLC gel filtration in detergent usefully complements cross-linking followed by SDS-PAGE.

View Article and Find Full Text PDF

By analyzing, after expression in yeast and purification, the intrinsic fluorescence properties of point mutants of rabbit Ca(2+)-ATPase (SERCA1a) with alterations to amino acid residues in Ca(2+)-binding site I (E(771)), site II (E(309)), in both sites (D(800)), or in the nucleotide-binding domain (W(552)), we were able to follow the conformational changes associated with various steps in the ATPase catalytic cycle. Whereas Ca(2+) binding to purified wild-type (WT) ATPase in the absence of ATP leads to the rise in Trp fluorescence expected for the so-called E2 --> E1Ca(2) transition, the Ca(2+)-induced fluorescence rise is dramatically reduced for the E(309)Q mutant. As this purified E(309)Q mutant retains the ability to bind Ca(2+) at site I (but not at site II), we tentatively conclude that the protein reorganization induced by Ca(2+) binding at site II makes the major contribution to the overall Trp fluorescence changes observed upon Ca(2+) binding to both sites.

View Article and Find Full Text PDF

Amphipols are amphipathic polymers designed to replace or supplement detergents in membrane protein solution studies. Previous work has suggested both advantages and disadvantages to the use of a polyacrylate-based amphipol, A8-35, for studying the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). We investigated this issue further using a set of four amphipols with different chemical structures.

View Article and Find Full Text PDF

We document here the intrinsic fluorescence and 45Ca2+ binding properties of putative "E2P-related" complexes of Ca2+-free ATPase with fluoride, formed in the presence of magnesium, aluminum, or beryllium. Intrinsic fluorescence measurements suggest that in the absence of inhibitors, the ATPase complex with beryllium fluoride (but not those with magnesium or aluminum fluoride) does constitute an appropriate analog of the "ADP-insensitive" phosphorylated form of Ca2+-ATPase, the so-called "E2P" state. 45Ca2+ binding measurements, performed in the presence of 100 mm KCl, 5 mm Mg2+, and 20% Me2SO at pH 8, demonstrate that this ATPase complex with beryllium fluoride (but again not those with magnesium or aluminum fluoride) has its Ca2+ binding sites accessible for rapid, low affinity (submillimolar) binding of Ca2+ from the luminal side of SR.

View Article and Find Full Text PDF

Crystalline forms of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase, obtained in the presence of either a substrate analog, AMPPCP, or a transition state complex, ADP.fluoroaluminate, were recently described to share the same general architecture despite the fact that, when studied in a test tube, these forms show different functional properties. Here, we show that the differences in the properties of the E1.

View Article and Find Full Text PDF
Article Synopsis
  • Ca(2+)-ATPase is a P-type ATPase that regulates intracellular Ca(2+) levels through a four-stage reaction cycle involving ion binding and phosphorylation of an aspartate residue.
  • Researchers generated an ultrastable low fluorescence phosphoenzyme through a series of labeling and Ca(2+) removal, which demonstrated unique enzymatic properties indicating a high-energy phosphoryl bond.
  • Using cryoelectron microscopy and additional structural techniques, they found the low fluorescence phosphoenzyme's structure closely resembles that of the native enzyme, concluding that its stability may result from a fluorescein-mediated cross-linking between cytoplasmic domains, while also considering the role of phosphate transfer to fluorescein.
View Article and Find Full Text PDF

Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C(10), was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrie et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca(2+)-dependent ATPase and Ca(2+)-pumping activity.

View Article and Find Full Text PDF