Publications by authors named "Challa Anil Kumar"

Background In obstetrics, accurately determining gestational age (GA) is a critical aspect of managing pregnancy and evaluating fetal growth and development. Intrauterine growth restriction (IUGR) is characterized by the failure of the fetus to reach its potential growth. Early detection of IUGR is crucial for optimal obstetric care to reduce fetal complications and neonatal morbidity and mortality.

View Article and Find Full Text PDF
Article Synopsis
  • "Compressive myelopathy" involves the spinal cord being compressed by various sources like herniated discs, trauma, or tumors, which can be diagnosed using MRI.
  • The study analyzed 50 patients with symptoms of compressive myelopathy, focusing on MRI features, lesion classification, and the correlation between MRI findings and surgical results.
  • Results showed that trauma was the most common cause, with the majority of compressive lesions being extradural; MRI proved to be an effective tool for assessing spinal cord integrity and diagnosing compressive myelopathy.
View Article and Find Full Text PDF

The application of CRISPR has greatly facilitated genotype-phenotype studies of human disease models. In this protocol, we describe CRISPR-Cas9-induced gene knockout in zebrafish, utilizing purified Cas9 protein and -transcribed sgRNA. This protocol targets the PHLPP1 gene in an Indian wild-caught strain, but is broadly applicable.

View Article and Find Full Text PDF

Nuclear factor, erythroid 2 like 2 (Nfe2l2 or Nrf2), is a transcription factor that protects cells by maintaining a homeostatic redox state during stress. The constitutive expression of Nrf2 (CaNrf2-TG) was previously shown to be pathological to the heart over time. We tested a hypothesis that the cardiac-specific expression of full length Nrf2 (mNrf2-TG) would moderately increase the basal antioxidant defense, triggering a pro-reductive environment leading to adaptive cardiac remodeling.

View Article and Find Full Text PDF

Objective: Hydroxyacylglutathione hydrolase (aka as GLO-2) is a component of the glyoxalase pathway involved in the detoxification of the reactive oxoaldehydes, glyoxal and methylglyoxal. These reactive metabolites have been linked to a variety of pathological conditions, including diabetes, cancer and heart disease and may be involved in the aging process. The objective of this study was to generate a mouse model deficient in GLO-2 to provide insight into the function of GLO-2 and to determine if it is potentially linked to endogenous oxalate synthesis which could influence urinary oxalate excretion.

View Article and Find Full Text PDF

The development of the heart follows a synergic action of several signaling pathways during gestational, pre- & postnatal stages. The current study aimed to investigate whether the myocardium experiences transcriptional changes during the transition from post-natal to adult hood stages. Herein, we used C57/B16/J mice at 4 (28- days; post-natal/PN) and 20 weeks (adulthood/AH) of ages and employed the next generation RNAseq (NGS) to profile the transcriptome and echocardiography analysis to monitor the structural/functional changes in the heart.

View Article and Find Full Text PDF

Undergraduate microbiology curriculum should be amenable to periodic changes to incorporate new developments and ideas. The curriculum should be used not merely as a way to disseminate facts but also as a way to allow students to experience the process of science. In the context of undergraduate microbiology education in Osmania University (Hyderabad, India), existing curriculum does not explicitly allow students to engage in deeper understanding of concepts and understanding of the process of science, both in lecture and laboratory courses.

View Article and Find Full Text PDF

Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2/Nrf2) is an inducible transcription factor that is essential for maintenance of redox signaling in response to stress. This suggests that if Nrf2 expression response could be enhanced for a defined physiological pro-oxidant stress then it would be protective. This has important implications for the therapeutic manipulation of the Keap1/Nrf2 signaling pathway which is now gaining a lot of attention.

View Article and Find Full Text PDF

Genetic analysis in model systems can provide a rich context for conceptual understanding of gene structure, regulation, and function. With an intent to create a rich learning experience in molecular genetics, we developed a semester-long course-based undergraduate research experience (CURE) using the CRISPR-Cas9 gene editing system to disrupt specific genes in the zebrafish. The course was offered to freshman students; nine students worked in four groups (two to three members per group) to design, synthesize, and test the nuclease activity of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/sgRNAs for targeted disruption of specific genes in the zebrafish.

View Article and Find Full Text PDF

Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed.

View Article and Find Full Text PDF

Zebrafish embryos are well suited as a model system to perform chemical biology experiments effectively in educational settings. We studied the effect of caffeine on heart rate (HR) and other phenotypes of zebrafish embryos using visual microscopy and simple imaging. Acute treatment with millimolar concentrations of caffeine in embryo medium caused a dose-dependent decrease in HR in 2-3-day-old zebrafish embryos, ultimately resulting in complete HR cessation.

View Article and Find Full Text PDF