Publications by authors named "Chaligne R"

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.

View Article and Find Full Text PDF

Ageing is associated with a decline in the number and fitness of adult stem cells. Ageing-associated loss of stemness is posited to suppress tumorigenesis, but this hypothesis has not been tested in vivo. Here we use physiologically aged autochthonous genetically engineered mouse models and primary cells to demonstrate that ageing suppresses lung cancer initiation and progression by degrading the stemness of the alveolar cell of origin.

View Article and Find Full Text PDF

As cancers progress, they become increasingly aggressive-metastatic tumours are less responsive to first-line therapies than primary tumours, they acquire resistance to successive therapies and eventually cause death. Mutations are largely conserved between primary and metastatic tumours from the same patients, suggesting that non-genetic phenotypic plasticity has a major role in cancer progression and therapy resistance. However, we lack an understanding of metastatic cell states and the mechanisms by which they transition.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that RAS mutations transform specific blood cell progenitors (granulocyte-monocyte progenitors) that have already acquired other mutations, suggesting advanced leukemia can arise from different cell types than initial clones.
  • * RAS-mutant leukemia stem cells show resistance to the treatment drug venetoclax due to changes in gene expression, leading to worse treatment responses and relapses characterized by monocytic features, highlighting the impact of genetic drivers on therapy effectiveness.
View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in genetic manipulation have made it possible to create specific deletions in mitochondrial DNA (mtDNA) in human cells, which can help study diseases linked to these genetic changes.
  • A method involving co-expression of end-joining machinery and targeted endonucleases was developed, showcasing effectiveness by generating clonal cell lines with a significant mtDNA deletion and varying levels of heteroplasmy.
  • Research showed that when mtDNA deletion reached around 75%, it led to severe cellular dysfunction and identified distinct nuclear gene expression changes in response to mtDNA deletions, suggesting insights for potential therapies.
View Article and Find Full Text PDF
Article Synopsis
  • Lineage plasticity in cancer affects treatment effectiveness, and this study presents a new in vivo method to explore neuroendocrine lineage changes in prostate cancer progression.* -
  • Researchers found that mouse prostate organoids with specific mutations form aggressive neuroendocrine prostate cancer (NEPC) when Rb1 is deleted, but only in the right in vivo environment, unlike traditional organoid cultures.* -
  • The study shows that ASCL1 cells originate from KRT8 luminal cells and that losing Ascl1 in NEPC leads to temporary regression but later recurrence; however, deleting it before transplantation prevents lineage changes and results in more treatable adenocarcinomas.*
View Article and Find Full Text PDF

Aging is associated with a decline in the number and fitness of adult stem cells . Aging-associated loss of stemness is posited to suppress tumorigenesis , but this hypothesis has not been tested . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting cell surface molecules with therapies like radioligands and antibodies has been effective in treating various cancers, but the impact of lineage plasticity on these markers is still poorly understood.
  • A specific example of lineage plasticity is the transformation of prostate adenocarcinoma to neuroendocrine prostate cancer, which poses significant treatment challenges and worsens patient survival rates.
  • Research using advanced single-cell analyses and large tumor sample studies revealed significant phenotypic variability and shared gene-regulatory networks between NEPC and small cell lung cancer, raising concerns about the effectiveness of current therapies while suggesting potential for better patient selection in clinical trials.
View Article and Find Full Text PDF
Article Synopsis
  • Somatic mutations can change chromatin accessibility, impacting how cells differentiate and causing abnormal growth, but studying this in human samples is complicated due to mixed cell types.* -
  • The researchers created a technique called GoT-ChA, which connects specific genotypes to chromatin accessibility at a single-cell level, allowing for analysis of thousands of cells simultaneously.* -
  • Their study on JAK2-mutant CD34 cells revealed that mutations lead to specific epigenetic changes that affect inflammation and differentiation, demonstrating the potential of GoT-ChA for exploring the relationship between somatic mutations and epigenetic changes in various cellular contexts.*
View Article and Find Full Text PDF

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression.

View Article and Find Full Text PDF

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival.

View Article and Find Full Text PDF

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.

View Article and Find Full Text PDF

A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells.

View Article and Find Full Text PDF

Driver gene mutations can increase the metastatic potential of the primary tumor, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of - a transcriptional effector of TGFβ signaling - which is a hallmark of multiple gastrointestinal malignancies. inactivation mediates TGFβ's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis.

View Article and Find Full Text PDF

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development.

View Article and Find Full Text PDF

Metastasis is the principal cause of cancer death, yet we lack an understanding of metastatic cell states, their relationship to primary tumor states, and the mechanisms by which they transition. In a cohort of biospecimen trios from same-patient normal colon, primary and metastatic colorectal cancer, we show that while primary tumors largely adopt LGR5 intestinal stem-like states, metastases display progressive plasticity. Loss of intestinal cell states is accompanied by reprogramming into a highly conserved fetal progenitor state, followed by non-canonical differentiation into divergent squamous and neuroendocrine-like states, which is exacerbated by chemotherapy and associated with poor patient survival.

View Article and Find Full Text PDF
Article Synopsis
  • RNA splicing factors often mutate in blood disorders like myelodysplastic syndrome (MDS), affecting how blood cells develop, but the role of these mutations in blood formation is still not fully understood.
  • Researchers used a new method, GoT-Splice, which combines gene profiling and advanced single-cell analysis to study how mutations in a specific splicing factor (SF3B1) influence blood progenitor cells.
  • Their findings showed that SF3B1 mutations lead to abnormal splicing patterns and an increase in specific blood cell types before MDS is clinically evident, highlighting the importance of understanding these mutations in early disease progression.
View Article and Find Full Text PDF
Article Synopsis
  • T cells play a significant role in inflammatory diseases, and this study aimed to better understand the T cell receptor (TCR) repertoires found in various human tissues, especially in relation to graft-versus-host disease (GVHD).
  • Researchers analyzed TCR repertoires in autopsied tissues from patients with and without GVHD, and also in mouse models, finding that similar tissue types had comparable TCR compositions, regardless of disease status.
  • The study revealed that tissue resident T cells, primarily of donor origin, had unique signatures and characteristics that differed from those found in blood, emphasizing the need to focus on tissue analysis for insights into inflammatory conditions.
View Article and Find Full Text PDF

Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner.

View Article and Find Full Text PDF

The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci.

View Article and Find Full Text PDF

Metastasis to the cerebrospinal fluid (CSF)-filled leptomeninges, or leptomeningeal metastasis (LM), represents a fatal complication of cancer. Proteomic and transcriptomic analyses of human CSF reveal a substantial inflammatory infiltrate in LM. We find the solute and immune composition of CSF in the setting of LM changes dramatically, with notable enrichment in IFN-γ signaling.

View Article and Find Full Text PDF

Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct cell states. Here we present single-cell aggregation of cell states (SEACells), an algorithm for identifying metacells that overcome the sparsity of single-cell data while retaining heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in identifying comprehensive, compact and well-separated metacells in both RNA and assay for transposase-accessible chromatin (ATAC) modalities across datasets with discrete cell types and continuous trajectories.

View Article and Find Full Text PDF

Despite insights gained by bulk DNA sequencing of cancer it remains challenging to resolve the admixture of normal and tumor cells, and/or of distinct tumor subclones; high-throughput single-cell DNA sequencing circumvents these and brings cancer genomic studies to higher resolution. However, its application has been limited to liquid tumors or a small batch of solid tumors, mainly because of the lack of a scalable workflow to process solid tumor samples. Here we optimize a highly automated nuclei extraction workflow that achieves fast and reliable targeted single-nucleus DNA library preparation of 38 samples from 16 pancreatic ductal adenocarcinoma patients, with an average library yield per sample of 2867 single nuclei.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosome 9p21.3 deletions in cancer remove vital tumor suppressors (CDKN2A/B) and also often delete an interferon gene cluster, impacting immune response.
  • Using a new method called MACHETE, researchers analyzed the effects of these deletions in a mouse model for pancreatic cancer.
  • They found that the loss of the interferon cluster leads to immune evasion and resistance to treatment by altering immune cell behavior and reducing CD8 T-cell surveillance, highlighting a complex interaction between genetic changes and immune response in tumors.
View Article and Find Full Text PDF