Publications by authors named "Chalermroj Sutthaphirom"

A scarcity of cofactors, necessary metabolites or substrates for enzymatic reactions, is among the major barriers for product synthesis in metabolically engineered cells. This work compares our recently developed cofactor-boosting strategy, which uses xylose reductase (XR) and lactose to increase the intracellular levels of reduced or oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), adenosine triphosphate (ATP) and acetyl coenzymeA (acetyl-CoA), with other previously reported methods. We demonstrated that the XR/lactose approach enhances levels of sugar alcohols and sugar phosphates, which leads to elevated levels of crucial cofactors required by specific metabolic pathways.

View Article and Find Full Text PDF

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands.

View Article and Find Full Text PDF

Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l-amino acid oxidase and l-hydroxy acid oxidase families, including l-tryptophan 2-monooxygenase, l-phenylalanine 2-oxidase and l-lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation.

View Article and Find Full Text PDF