Cobalt oxide (CoO)-based nanostructures have the potential as low-cost materials for lithium-ion (Li-ion) and sodium-ion (Na-ion) battery anodes with a theoretical capacity of 890 mAh/g. Here, we demonstrate a novel method for the production of CoO nanoplatelets. This involves the growth of flower-like cobalt oxyhydroxide (CoOOH) nanostructures at a polarized liquid|liquid interface, followed by conversion to flower-like CoO via calcination.
View Article and Find Full Text PDFHighly active, structurally disordered CoFeO/CoO electrocatalysts are synthesized by pulsed laser fragmentation in liquid (PLFL) of a commercial CoFeO powder dispersed in water. A partial transformation of the CoFeO educt to CoO is observed and proposed to be a thermal decomposition process induced by the picosecond pulsed laser irradiation. The overpotential in the OER in aqueous alkaline media at 10 mA cm is reduced by 23% compared to the educt down to 0.
View Article and Find Full Text PDFTemperature dependent reaction products are observed when borohydride is present in aqueous solutions containing Ir(3+). At temperatures of 40 °C and above, metallic iridium is formed while under ambient conditions of 25 °C, borohydride results in an alkaline environment that helps in hydrolyzing the precursor to form IrO2. The Ir foams and IrO2 are subsequently used to study their catalytic properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2014
Iridium nanostructures with different morphologies are synthesized by a simple, environmentally friendly approach in aqueous media under mild conditions. The morphology dependent electrocatalytic activity of Ir nanochains and nanoparticles towards oxygen reduction reaction (ORR) has been demonstrated in both acidic and alkaline media. Comparative electrochemical studies reveal that nanochains exhibit significantly enhanced ORR activities in both acidic and alkaline media as compared with nanoparticles, as a result of the continuous structure of interconnected particles.
View Article and Find Full Text PDFA facile, environmentally friendly approach to synthesize branched Ir nanochain-like structures under mild conditions, using polyfunctional capping molecules in an aqueous medium is reported; the nanostructures exhibit a surface plasmon resonance peak (SPR) in the visible region and serve as an active substrate for surface enhanced Raman scattering studies.
View Article and Find Full Text PDFInterconnected Os nanochains consisting of ultrafine particles prepared using a simple procedure yield a coupled surface plasmon peak in the visible region and can be used as substrates for surface enhanced Raman scattering of various analytes.
View Article and Find Full Text PDF