The mechanism by which TSC2 inactivation or deficiency contributes to the pathology of tuberous sclerosis complex (TSC) is not fully clear. We show that renal angiomyolipomas from TSC patients and kidney cortex from Tsc2+/- mice exhibit elevated levels of reactive oxygen species (ROS). Downregulation of tuberin (protein encoded by TSC2 gene) in renal proximal tubular epithelial cells significantly increased ROS concomitant with enhanced Nox4.
View Article and Find Full Text PDFIn vitro models for the investigation of renal vascular development are limited. We previously showed that isolated metanephric mesenchymal (MM) and ureteric bud (UB) cells grown in three-dimensional (3D) matrices formed organoids that consisted of primitive vascular structures surrounding a polarized epithelium. Here, we examined the potential of two principal effectors of vasculogenesis, vascular endothelial growth factor A (VEGF-A), and platelet-derived growth factor B chain (PDGF-BB), to stimulate MM cell differentiation.
View Article and Find Full Text PDFObjective: Type 2 diabetes (T2D) is the primary case of chronic kidney disease (CKD). Inflammation is associated with metabolic dysregulation in patients with T2D and CKD. Tryptophan (TRP) metabolism may have relevance to the CKD outcomes and associated symptoms.
View Article and Find Full Text PDFBackground: Circulating levels of fibroblast growth factor 23 (FGF23) increase progressively and correlate with systemic inflammation in chronic kidney disease (CKD). The aim of this study was to identify and characterize the causal relationship between FGF23 and inflammation in CKD.
Methods: Circulating FGF23 and inflammatory cytokines were correlated in healthy subjects and patients with varying levels of CKD.
Purpose: To employ high-resolution manganese-enhanced MRI (MEMRI) to study abnormal calcium activity in different cell layers in streptozotocin-induced diabetic rat retinas, and to determine whether MEMRI detects changes at earlier time points than previously reported.
Methods: Sprague-Dawley rats were studied 14 days (n = 8) and 30 days (n = 5) after streptozotocin (STZ) or vehicle (n = 7) injection. Manganese-enhanced MRI at 20 × 20 × 700 μm, in which contrast is based on manganese as a calcium analogue and an MRI contrast agent, was obtained in light and dark adaptation of the retina in the same animals in which one eye was covered and the fellow eye was not.
Kidney development is regulated by a coordinated reciprocal induction of metanephric mesenchymal (MM) and ureteric bud (UB) cells. Here, established MM and UB progenitor cell lines were recombined in three-dimensional Matrigel implants in SCID mice. Differentiation potential was examined for changes in phenotype, organization, and the presence of specialized proteins using immunofluorescence and bright-field and electron microscopy.
View Article and Find Full Text PDFApoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex.
View Article and Find Full Text PDFp53 mediates DNA damage-induced cell-cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR-S6K1 through p38alpha MAPK.
View Article and Find Full Text PDFInhibition of mTOR by rapamycin is an important approach in cancer therapy. In early clinical trials, tuberous sclerosis complex (TSC)-related kidney tumours were found to regress following rapamycin treatment. Since loss of function of the DNA repair OGG1 enzyme has a major role in multistep carcinogenesis of the kidney and other organs, we investigated the effect of rapamycin on OGG1 regulation.
View Article and Find Full Text PDFObjective: To investigate potential mechanisms of oxidative DNA damage in a rat model of type 1 diabetes and in murine proximal tubular epithelial cells and primary culture of rat proximal tubular epithelial cells.
Research Design And Methods: Phosphorylation of Akt and tuberin, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels, and 8-oxoG-DNA glycosylase (OGG1) expression were measured in kidney cortical tissue of control and type 1 diabetic animals and in proximal tubular cells incubated with normal or high glucose.
Results: In the renal cortex of diabetic rats, the increase in Akt phosphorylation is associated with enhanced phosphorylation of tuberin, decreased OGG1 protein expression, and 8-oxodG accumulation.