The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality.
View Article and Find Full Text PDFWe present a comparative study of gaseous microflow systems using the recently introduced Fokker-Planck approach and other methods such as: direct simulation Monte Carlo, lattice Boltzmann, and variational solution of Boltzmann-BGK. We show that this Fokker-Plank approach performs efficiently at intermediate values of Knudsen number, a region where direct simulation Monte Carlo becomes expensive and lattice Boltzmann becomes inaccurate. We also investigate the effectiveness of a recently proposed Fokker-Planck model in simulations of heat transfer, as a function of relevant parameters such as the Prandtl, Knudsen numbers.
View Article and Find Full Text PDF