Publications by authors named "Chakradhar Guntuboina"

Peptides are crucial in biological processes and therapeutic applications. Given their importance, advancing our ability to predict peptide properties is essential. In this study, we introduce Multi-Peptide, an innovative approach that combines transformer-based language models with graph neural networks (GNNs) to predict peptide properties.

View Article and Find Full Text PDF

Intrinsically disordered Proteins (IDPs) constitute a large and structureless class of proteins with significant functions. The existence of IDPs challenges the conventional notion that the biological functions of proteins rely on their three-dimensional structures. Despite lacking well-defined spatial arrangements, they exhibit diverse biological functions, influencing cellular processes and shedding light on disease mechanisms.

View Article and Find Full Text PDF

Recent advances in language models have enabled the protein modeling community with a powerful tool that uses transformers to represent protein sequences as text. This breakthrough enables a sequence-to-property prediction for peptides without relying on explicit structural data. Inspired by the recent progress in the field of large language models, we present PeptideBERT, a protein language model specifically tailored for predicting essential peptide properties such as hemolysis, solubility, and nonfouling.

View Article and Find Full Text PDF