Publications by authors named "Chakkrid Sattayatewa"

Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies.

View Article and Find Full Text PDF

The purpose of this study was to develop simple, accurate, and inexpensive measurement protocols for dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) at low levels in wastewater effluents. Two protocols are presented--one to measure DON exclusively, and the other to measure DON and DNRP simultaneously. Currently, DON and DNRP are calculated indirectly by subtracting the dissolved inorganic fractions from the total dissolved concentration, resulting in significant errors.

View Article and Find Full Text PDF

Odor emission rates are commonly measured in the laboratory or occasionally estimated with inverse modeling techniques. A modified inverse modeling approach is used to estimate source emission rates inside of a postdigestion centrifuge building of a water reclamation plant. Conventionally, inverse modeling methods divide an indoor environment in zones on the basis of structural design and estimate source emission rates using models that assume homogeneous distribution of agent concentrations within a zone and experimentally determined link functions to simulate airflows among zones.

View Article and Find Full Text PDF

Odor and odorant emission rates from freshly dewatered biosolids in a dewatering building of a Water Reclamation Plant (WRP) are measured using the EPA flux chamber and wind tunnel methods. Experimental results are compared statistically to test whether the two methods result in similar emission rates when experiments are performed under field conditions. To the best of our knowledge the literature is void of studies comparing the two methods indoors.

View Article and Find Full Text PDF

A lab-scale sequencing batch reactor fed with real municipal wastewater was used to study nitrous oxide (N(2)O) emissions from simulated wastewater treatment processes. The experiments were performed under four different controlled conditions as follows: (1) fully aerobic, (2) anoxic-aerobic with high dissolved oxygen (DO) concentration, (3) anoxic-aerobic with low DO concentration, and 4) intermittent aeration. The results indicated that N(2)O production can occur from both incomplete nitrification and incomplete denitrification.

View Article and Find Full Text PDF

This study investigated the fate of nitrogen species, especially organic nitrogen, along the mainstream wastewater treatment processes in four biological nutrient removal (BNR) wastewater treatment plants (WWTPs). It was found that the dissolved organic nitrogen (DON) fraction was as high as 47% of soluble nitrogen (SN) in the low-SN effluent plant, which limited the plant's capability to remove nitrogen to very low levels. A lower DON fraction was observed in high-SN effluent plants.

View Article and Find Full Text PDF

Nitrogen species, specifically, the fate and occurrence of organic nitrogen (ON) within a 4-stage Bardenpho process bioreactor producing low total nitrogen (TN) effluents were investigated in this study. The results showed release of ON in primary anoxic zone and no ON release in the first aerobic zone of the process. The research included investigation of biodegradability/bioavailability of wastewater-derived effluent dissolved ON (DON).

View Article and Find Full Text PDF

The research objective was to assess dissolved organic nitrogen (DON) bioavailability in wastewater effluents from a pilot-scale nitrification plant and a laboratory-scale total nitrogen (TN) removal plant. The DON bioavailability was assessed using a 14-day bioassay protocol containing bacterial and algal inocula. Nitrogen species, dissolved organic carbon, chlorophyll a, and biomass (as total suspended solids and culturable cell counts) concentrations were measured to assess DON bioavailability.

View Article and Find Full Text PDF