Our prior study (Tarasov et al., 2022) discovered that numerous adaptive mechanisms emerge in response to cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) which included overexpression of a large number of proteins. Here, we conducted an unbiased phosphoproteomics analysis in order to determine the role of altered protein phosphorylation in the adaptive heart performance and protection profile of adult TGAC8 left ventricle (LV) at 3-4 months of age, and integrated the phosphoproteome with transcriptome and proteome.
View Article and Find Full Text PDFFortune J Health Sci
September 2023
Advancing age is the most important risk factor for cardiovascular diseases (CVDs). Two types of cells, within the heart pacemaker, sinoatrial node (SAN), and within the left ventricle (LV), control two crucial characteristics of heart function, heart beat rate and contraction strength. As age advances, the heart's structure becomes remodeled, and SAN and LV cell functions deteriorate, thus increasing the risk for CVDs.
View Article and Find Full Text PDFBackground: Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging.
Methods: Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm for 2 min each weekday for a total dose of 1 Einstein (4.
Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TG) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TG, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TG was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TG vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TG did not differ from WT.
View Article and Find Full Text PDF: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein-protein interactions (PPIs) in heart has been explored. : To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs.
View Article and Find Full Text PDFPluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases.
View Article and Find Full Text PDFBackground: Cyclic guanosine monophosphate-protein kinase G-phosphodiesterase 5 signaling may be disturbed in heart failure (HF) with preserved ejection fraction, contributing to cardiac remodeling and dysfunction. The purpose of this study was to manipulate cyclic guanosine monophosphate signaling using the dipeptidyl-peptidase 4 inhibitor saxagliptin and phosphodiesterase 5 inhibitor tadalafil. We hypothesized that preservation of cyclic guanosine monophosphate cGMP signaling would attenuate pathological cardiac remodeling and improve left ventricular (LV) function.
View Article and Find Full Text PDFUncoordinated contraction from electromechanical delay worsens heart failure pathophysiology and prognosis, but restoring coordination with biventricular pacing, known as cardiac resynchronization therapy (CRT), improves both. However, not every patient qualifies for CRT. We show that heart failure with synchronous contraction is improved by inducing dyssynchrony for 6 hours daily by right ventricular pacing using an intracardiac pacing device, in a process we call pacemaker-induced transient asynchrony (PITA).
View Article and Find Full Text PDFBackground: Currently there is no reliable medical treatment for aortic regurgitation (AR).
Methods: Thirty-nine Sprague-Dawley rats underwent creation of AR or sham operation. Treated rats were assigned to early or late institution of sildenafil therapy (100 mg/kg/day) for a total of 10 weeks.
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles.
View Article and Find Full Text PDFBackground: Biomarkers that predict response to cardiac resynchronization therapy (CRT) in heart failure patients with dyssynchrony (HFDYS) would be clinically important. Circulating extracellular microRNAs (miRNAs) have emerged as novel biomarkers that may also play important functional roles, but their relevance as markers for CRT response has not been examined.
Methods And Results: Comprehensive miRNA polymerase chain reaction arrays were used to assess baseline levels of 766 plasma miRNAs in patients undergoing clinically indicated CRT in an initial discovery set (n=12) with and without subsequent echocardiographic improvement at 6 months after CRT.
Aims: The ultimate cause of heart failure (HF) is not known to date. The cytoskeletal protein desmin is differentially modified and forms amyloid-like oligomers in HF. We postulated that desmin post-translational modifications (PTMs) could drive aberrant desmin aggregation in HF.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
October 2013
The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging one or two valve cusps, resulting in eccentric remodeling and left ventricular dysfunction, with no increase in overall fibrosis.
View Article and Find Full Text PDFBackground: Slowed Na⁺ current (INa) decay and enhanced late INa (INa-L) prolong the action potential duration (APD) and contribute to early afterdepolarizations. Cardiac resynchronization therapy (CRT) shortens APD compared with dyssynchronous heart failure (DHF); however, the role of altered Na⁺ channel gating in CRT remains unexplored.
Methods And Results: Adult dogs underwent left-bundle branch ablation and right atrial pacing (200 beats/min) for 6 weeks (DHF) or 3 weeks followed by 3 weeks of biventricular pacing at the same rate (CRT).
J Cardiovasc Transl Res
April 2012
Cardiac resynchronization therapy reduces morbidity and mortality in patients with symptomatic systolic heart failure (New York Heart Association class III or IV) and ventricular conduction delay. The current review focuses on how high-throughput technologies including gene expression profiling and proteomics have helped in our understanding of the pathophysiology of electromechanical dyssynchrony and the molecular mechanisms by which cardiac resynchronization therapy (CRT) exerts its beneficial effects. Comparing gene expression changes in early-activated anterior vs.
View Article and Find Full Text PDFRationale: Phosphorylation of β(2)-adrenergic receptor (β(2)AR) by a family of serine/threonine kinases known as G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) is a critical determinant of cardiac function. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is a well-established causal factor of heart failure, but the underlying mechanism is poorly understood.
Objective: We sought to determine the relative contribution of PKA- and GRK-mediated phosphorylation of β(2)AR to the receptor coupling to G(i) signaling that attenuates cardiac reserve and contributes to the pathogenesis of heart failure in response to pressure overload.
Cardiac resynchronization therapy (CRT), in which both ventricles are paced to recoordinate contraction in hearts that are dyssynchronous from conduction delay, is the only heart failure (HF) therapy to date to clinically improve acute and chronic function while also lowering mortality. CRT acutely enhances chamber mechanical efficiency but chronically alters myocyte signaling, including improving β-adrenergic receptor reserve. We speculated that the latter would identify unique CRT effects that might themselves be effective for HF more generally.
View Article and Find Full Text PDFTwo major β-adrenergic receptor (βAR) subtypes, β(1)AR and β(2)AR, are expressed in mammalian heart with β(1)AR coupling to G(s) and β(2)AR dually coupling to G(s) and G(i) proteins. In many types of chronic heart failure, myocardial contractile response to both β(1)AR and β(2)AR stimulation is severely impaired. The dysfunction of βAR signaling in failing hearts is largely attributable to an increase in G(i) signaling, because disruption of the G(i) signaling restores myocardial contractile response to β(1)AR as well as β(2)AR stimulation.
View Article and Find Full Text PDFDrug Discov Today Dis Mech
January 2010
Cardiac resynchronization (CRT) is a widely used clinical treatment for heart failure patients with depressed function and discoordinate contraction due to conduction delay. It is unique among heart failure treatments as it both acutely and chronically enhances systolic function yet also prolongs survival. While improved chamber mechano-energetics has been considered a primary mechanism for CRT benefit, new animal model data are revealing novel and in many instances unique cellular and molecular modifications from the treatment.
View Article and Find Full Text PDFBackground: Cardiac resynchronization therapy (CRT) improves chamber mechanoenergetics and morbidity and mortality of patients manifesting heart failure with ventricular dyssynchrony; however, little is known about the molecular changes underlying CRT benefits. We hypothesized that mitochondria may play an important role because of their involvement in energy production.
Methods And Results: Mitochondria isolated from the left ventricle in a canine model of dyssynchronous or resynchronized (CRT) heart failure were analyzed by a classical, gel-based, proteomic approach.
Background: Cardiac electromechanical dyssynchrony causes regional disparities in workload, oxygen consumption, and myocardial perfusion within the left ventricle. We hypothesized that such dyssynchrony also induces region-specific alterations in the myocardial transcriptome that are corrected by cardiac resynchronization therapy (CRT).
Methods And Results: Adult dogs underwent left bundle branch ablation and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, n=12) or 3 weeks, followed by 3 weeks of resynchronization by biventricular pacing at the same pacing rate (CRT, n=10).
Background: Cardiac resynchronization therapy (CRT) is the first clinical heart failure treatment that improves chamber systolic function in both the short-term and long-term yet also reduces mortality. The mechanical impact of CRT is immediate and well documented, yet its long-term influences on myocyte function and adrenergic modulation that may contribute to its sustained benefits are largely unknown.
Methods And Results: We used a canine model of dyssynchronous heart failure (DHF; left bundle ablation, atrial tachypacing for 6 weeks) and CRT (DHF for 3 weeks, biventricular tachypacing for subsequent 3 weeks), contrasting both to nonfailing controls.