This manuscript quantitatively investigates remodeling dynamics of the cortical microvascular network (thousands of connected capillaries) following photothrombotic ischemia (cubic millimeter volume, imaged weekly) using a novel two-photon angiography and high throughput vascular vectorization method. The results suggest distinct temporal patterns of cerebrovascular plasticity, with acute remodeling peaking at one week post-stroke. The network architecture then gradually stabilizes, returning to a new steady state after four weeks.
View Article and Find Full Text PDFSignificance: Visualizing high-resolution hemodynamics in cerebral tissue over a large field of view (FOV), provides important information in studying disease states affecting the brain. Current state-of-the-art optical blood flow imaging techniques either lack spatial resolution or are too slow to provide high temporal resolution reconstruction of flow map over a large FOV.
Aim: We present a high spatial resolution computational optical imaging technique based on principles of laser speckle contrast imaging (LSCI) for reconstructing the blood flow maps in complex tissue over a large FOV provided that the three-dimensional (3D) vascular structure is known or assumed.
Laser speckle contrast imaging (LSCI) is a powerful tool for non-invasive, real-time imaging of blood flow in tissue. However, the effect of tissue geometry on the form of the electric field autocorrelation function and speckle contrast values is yet to be investigated. In this paper, we present an ultrafast forward model for simulating a speckle contrast image with the ability to rapidly update the image for a desired illumination pattern and flow perturbation.
View Article and Find Full Text PDF