In this study we identify a cGMP-dependent protein kinase (PKG) cascade as a biochemical pathway critical for controlling low-oxygen tolerance in the adult fruit fly, Drosophila melanogaster. Even though adult Drosophila can survive in 0% oxygen (anoxia) environments for hours, air with less than 2% oxygen rapidly induces locomotory failure resulting in an anoxic coma. We use natural genetic variation and an induced mutation in the foraging (for) gene, which encodes a Drosophila PKG, to demonstrate that the onset of anoxic coma is correlated with PKG activity.
View Article and Find Full Text PDFOur knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food-related behaviors and a specific gene family called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long-term migratory behavior.
View Article and Find Full Text PDFBalancing the acquisition, allocation and storage of energy during periods of food deprivation is critical for survival. We show that natural variation in the foraging (for) gene, which encodes a cGMP-dependent protein kinase (PKG) in the fruit fly Drosophila melanogaster, affects behavioral and physiological responses to short-term food deprivation. Rover and sitter, natural allelic variants of for, differ in their stored carbohydrate reserves as well as their response to short-term deprivation.
View Article and Find Full Text PDFIn natural environments where food abundance and quality can change drastically over time, animals must continuously alter their food acquisition strategies. Although genetic variation contributes to this plasticity, the specific genes involved and their interactions with the environment are poorly understood. Here we report that natural variation in the Drosophila gene, foraging (for), which encodes a cGMP-dependent protein kinase (PKG), affects larval food acquisition in an environmentally dependent fashion.
View Article and Find Full Text PDFThe ability to identify and respond to food is essential for survival, yet little is known about the neural substrates that regulate natural variation in food-related traits. The foraging (for) gene in Drosophila melanogaster encodes a cGMP-dependent protein kinase (PKG) and has been shown to function in food-related traits. To investigate the tissue distribution of FOR protein, we generated an antibody against a common region of the FOR isoforms.
View Article and Find Full Text PDF