Face processing plays a critical role in human social life, from differentiating friends from enemies to choosing a life mate. In this work, we leverage various computer vision techniques, combined with human assessments of similarity between pairs of faces, to investigate human face representation. We find that combining a shape- and texture-feature based model (Active Appearance Model) with a particular form of metric learning, not only achieves the best performance in predicting human similarity judgments on held-out data (both compared to other algorithms and to humans), but also performs better or comparable to alternative approaches in modeling human social trait judgment (e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
Humans readily form social impressions, such as attractiveness and trustworthiness, from a stranger's facial features. Understanding the provenance of these impressions has clear scientific importance and societal implications. Motivated by the efficient coding hypothesis of brain representation, as well as Claude Shannon's theoretical result that maximally efficient representational systems assign shorter codes to statistically more typical data (quantified as log likelihood), we suggest that social "liking" of faces increases with statistical typicality.
View Article and Find Full Text PDFAdv Neural Inf Process Syst
December 2018
Understanding how humans and animals learn about statistical regularities in stable and volatile environments, and utilize these regularities to make predictions and decisions, is an important problem in neuroscience and psychology. Using a Bayesian modeling framework, specifically the Dynamic Belief Model (DBM), it has previously been shown that humans tend to make the assumption that environmental statistics undergo abrupt, unsignaled changes, even when environmental statistics are actually stable. Because exact Bayesian inference in this setting, an example of switching state space models, is computationally intensive, a number of approximately Bayesian and heuristic algorithms have been proposed to account for learning/prediction in the brain.
View Article and Find Full Text PDF