Publications by authors named "Chairul Hudaya"

Homogeneously dispersed Sn nanoparticles approximately ⩽10 nm in a polymerized C (PC) matrix, employed as the anode of a Li-ion battery, are prepared using plasma-assisted thermal evaporation coupled by chemical vapor deposition. The self-relaxant superelastic characteristics of the PC possess the ability to absorb the stress-strain generated by the Sn nanoparticles and can thus alleviate the problem of their extreme volume changes. Meanwhile, well-dispersed dot-like Sn nanoparticles, which are surrounded by a thin SnO layer, have suitable interparticle spacing and multilayer structures for alleviating the aggregation of Sn nanoparticles during repeated cycles.

View Article and Find Full Text PDF

Lithium-ion capacitors (LICs) and lithium-ion batteries (LIBs) are important energy storage devices. As a material with good mechanical, thermal, and chemical properties, low-carbon silicon oxycarbide (LC-SiOC), a kind of silicone oil-derived SiOC, is of interest as an anode material, and we have examined the electrochemical behavior of LC-SiOC in LIB and LIC devices. We found that the lithium storage mechanism in LC-SiOC, prepared by pyrolysis of phenyl-rich silicon oil, depends on an oxygen-driven rather than a carbon-driven mechanism within our experimental scope.

View Article and Find Full Text PDF

Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (∼50 nm) and FTO thin films (∼20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles.

View Article and Find Full Text PDF

Facile production and novel transparent heaters consisting of fluorine-doped tin oxide (SnO2:F or FTO) thin films covered with three different scattered metal nanodots (Cr-nd, NiCr-nd and Ni-nd) prepared by plasma-enhanced sputtering system and electron cyclotron resonance-metal organic chemical vapor deposition are investigated. The heaters exhibit excellent optical transmittances of over 85% and superior saturated temperatures of more than 80 °C when a relatively low 12 V DC is supplied. The scattered metal nanodots FTO heaters successfully improve the specific power of bare FTO heater by 21, 15, and 12% for NiCr-nd FTO, Cr-nd FTO, and Ni-nd FTO, respectively.

View Article and Find Full Text PDF

Structurally regulated and hybridized Al-C nanoclusters are prepared from C60 and Al precursors by thermal evaporation-combined plasma-enhanced chemical vapour deposition. The resulting Al-C hybrid nanoclustered anodes for Li-ion batteries exhibit a high reversible capacity of >900 mA h g(-1) at an optimized current density of 6 A g(-1) for over 100 cycles.

View Article and Find Full Text PDF

An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity.

View Article and Find Full Text PDF

In order to replace the brittle graphite bipolar plates currently used for the PEMFC stack, coated SUS 316 was employed. As a metallic bipolar plate, coated SUS 316 can provide higher mechanical strength, better durability to shocks and vibration, less permeability, improved thermal and bulk electrical conductivity, as well as being thinner and lighter. To enhance the interfacial contact resistance and corrosion resistance of SUS 316, the deposition of GTO:F and ZTO:F composite films was carried out by ECR-MOCVD.

View Article and Find Full Text PDF