Publications by authors named "Chaillan F"

Loss of vestibular function is known to cause spatial memory deficits and hippocampal dysfunction, in terms of impaired place cell firing and abnormal theta rhythm. Based on these results, it has been of interest to determine whether vestibular loss also affects the development and maintenance of long-term potentiation (LTP) in the hippocampus. This article summarizes and critically reviews the studies of hippocampal LTP following a vestibular loss and its relationship to NMDA receptor expression, that have been published to date.

View Article and Find Full Text PDF

When facing a choice at a decision point in a maze, rats often display hesitations, pauses and reorientations. Such "vicarious trial and error" (VTE) behavior is thought to reflect decision making about which choice option is best, and thus a deliberation process. Although deliberation relies on a wide neural network, the dorsal hippocampus appears to play a prominent role through both its neural activity and its dynamic interplay with other brain areas.

View Article and Find Full Text PDF

Vestibular dysfunction strongly impairs hippocampus-dependent spatial memory performance and place cell function. However, the hippocampal encoding of vestibular information at the synaptic level, remains sparsely explored and controversial. We investigated changes in in vivo long-term potentiation (LTP) and NMDA glutamate receptor (NMDAr) density and distribution after bilateral vestibular lesions (BVL) in adult rats.

View Article and Find Full Text PDF

Excitotoxic lesions are frequently used to assess the role of cerebral structures in cognitive processes in rodents. However, the precise site and extent of these lesions remain unknown without histological verifications. Using a 7-Teslas MRI system and a T2-weighted turbo-RARE sequence, MR images were acquired at several time points following NMDA lesions (1h, 6h, 24h, 48h, 1 week and 2 weeks).

View Article and Find Full Text PDF

The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are reciprocally connected with the hippocampus (Hip) and the medial prefrontal cortex (mPFC). Growing evidence suggests that these nuclei might play a crucial role in cognitive processes requiring Hip-mPFC interactions, including spatial navigation. Here, we tested the effect of ReRh lesions on the firing properties and spatial activity of dorsal hippocampal CA1 place cells as male rats explored a familiar or a novel environment.

View Article and Find Full Text PDF

Since the discovery of place cells, the hippocampus is thought to be the neural substrate of a cognitive map. The later discovery of head direction cells, grid cells and border cells, as well as of cells with more complex spatial signals, has led to the idea that there is a brain system devoted to providing the animal with the information required to achieve efficient navigation. Current questioning is focused on how these signals are integrated in the brain.

View Article and Find Full Text PDF

Neural cell adhesion molecule (NCAM) is associated with polysialic acid (PSA), and its function is highly dependent on the extent of polysialylation through the activity of two polysialyltransferases, sialyltransferase-X (STX) and polysialyltransferase (PST). PSA-NCAM plays an important role in synaptic plasticity in the hippocampus. The involvement of STX and PST during mnesic processes was assessed in the adult rat hippocampus.

View Article and Find Full Text PDF

Encoding of a goal with a specific value while performing a place navigation task involves the medial prefrontal cortex (mPFC) and the dorsal hippocampus (dHPC), and depends on the coordination between mPFC and the ventro-intermediate hippocampus (vHPC).The present work investigates the contribution of mPFC, dHPC, and vHPC when the rat has to update the value of a goal. Rats were trained to navigate to an uncued goal in order to release a food pellet in a continuous place navigation task.

View Article and Find Full Text PDF

Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.

View Article and Find Full Text PDF

The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO(2), but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean.

View Article and Find Full Text PDF

Neural cell adhesion molecule (NCAM) is frequently associated with polysialic acid (PSA), and its function is highly dependent on this polysialylation. PSA-NCAM plays an important role in synaptic plasticity in the hippocampus. STX and PST are the enzymes responsible for NCAM polysialylation.

View Article and Find Full Text PDF

The prevalent theory in learning and memory processes is that they are underlain by short and long-term changes in synaptic weight, which continuously modulates neural networks during acquisition and recall. This synaptic plasticity has been revealed by recording extracellular field potentials. The enhancement of synaptic transmission was primarily noted in the hippocampus and was named long-term potentiation (LTP).

View Article and Find Full Text PDF

Tissue inhibitor of metalloproteinases (TIMP-1) is one of the four-member family (TIMPs-1-4) of multifunctional proteins that inhibit matrix metalloproteinases (MMPs). Its expression in the hippocampus is neuronal-activity-dependent and dramatically induced by stimuli leading to long-term potentiation (LTP), suggesting that TIMP-1 is a candidate plasticity protein potentially involved in learning and memory processes. We tested this hypothesis in a hippocampus-dependent task using the new olfactory tubing maze, with mice carrying a null mutation for TIMP-1 (TIMP-1 KO) and mice overexpressing TIMP-1 (TIMP-1 (tg)).

View Article and Find Full Text PDF

We trained BALB/c Byllco (C), CD-1, SV 129/SvPasCr1 (129 SV), C57BL/6 (B6) and DBA/2J (D2) mice using the olfactory tubing maze with the hope of gaining insight into behavioral genetics related to learning and memory processes. All strains of mice acquired the odor-reward associations using this new task except the D2 strain. The C, CD-1, and 129 SV consistently remembered the associations from the sixth 20-trial training session, reaching 80% +/- 5 correct responses in session seven.

View Article and Find Full Text PDF

Oily drill cuttings and a soil contaminated with weathered crude oils were treated by enhanced biodegradation under tropical conditions in industrial scaled experiments. Oil contaminants were characterized by gas chromatography and mass spectrometry. This allowed for the identification of a mixture of two crude oils in the contaminated soil.

View Article and Find Full Text PDF

The tissue inhibitor of metalloproteinases-1 (TIMP-1) belongs to a family of multifunctional proteins that inhibit matrix metalloproteinases (MMPs), but also regulate cell growth, proliferation, migration and apoptosis in non-nervous tissues. We had previously reported that kainate (KA)-mediated excitotoxic seizures induce the expression of TIMP-1 in resistant neurons and reactive astrocytes of the rat CNS, but the functional implications of these changes had not been elucidated. In the present work we used a targeted gene null mutation in mice to investigate in vivo the involvement of TIMP-1 in neuronal death and axonal sprouting following KA.

View Article and Find Full Text PDF

Cyanobacterial mats are ubiquitous in tropical petroleum-polluted environments. They form a high biodiversity microbial consortium that contains efficient hydrocarbons degraders. A cyanobacterial mat collected from a petroleum-contaminated environment located in Indonesia was studied for its biodegradation potential.

View Article and Find Full Text PDF

A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses.

View Article and Find Full Text PDF

Firstly, olfactory association learning was used to determine the modulating effect of 5-HT4 receptor involvement in learning and long-term memory. Secondly, the effects of systemic injections of a 5-HT4 partial agonist and an antagonist on long-term potentiation (LTP) and depotentiation in the dentate gyrus (DG) were tested in freely moving rats. The modulating role of the 5-HT4 receptors was studied by using a potent, 5-HT4 partial agonist RS 67333 [1-(4-amino-5-chloro-2-methoxyphenyl)-3-(1-n-butyl-4-piperidinyl)-1-propanone] and a selective 5-HT4 receptor antagonist RS 67532 [1-(4-amino-5-chloro-2-(3,5-dimethoxybenzyloxyphenyl)-5-(1-piperidinyl)-1-propanone].

View Article and Find Full Text PDF

Screening of aerobic culturable hydrocarbon (HC)-degrading microorganisms isolated from petroleum-polluted soils and cyanobacterial mats from Indonesia resulted in the collection of 33 distinct species. Eight bacteria, 21 fungi and 4 yeasts were identified to the specific level by molecular and phenotypic techniques. Bacterial strains belonged to the genera Gordonia, Brevibacterium, Aeromicrobium, Dietzia, Burkholderia and Mycobacterium.

View Article and Find Full Text PDF

This review summarizes research that correlates behavioral performance and cellular physiology leading to modifications in the neuronal networks supporting long-term memory in the mammalian brain. Rats were trained in an olfactory associative discrimination task in which natural odors were replaced by mimetic olfactory stimulations. Olfactory learning induced synaptic modifications that affected behavioral performance along the central olfactory pathways.

View Article and Find Full Text PDF

Modifications of synaptic efficacy in the dentate gyrus were investigated during an olfactory associative task. A group of rats was trained to discriminate between a patterned electrical stimulation of the lateral olfactory tract, used as an artificial cue, associated with a water reward, and a natural odor associated with a flash of light. Monosynaptic field potential responses evoked by single electrical stimuli to the lateral perforant path were recorded in the granular layer of the ipsilateral dentate gyrus prior to and just after each training session.

View Article and Find Full Text PDF

This article begins with a review of recent experiments investigating the synaptic efficacy changes occurring in rat dentate gyrus and piriform cortex during an associative olfactory task. In all these experiments, animals were trained to discriminate among an artificial cue, a patterned electrical stimulation distributed to the lateral olfactory tract associated with a water reward, and a natural odor associated with a flash of light. Monosynaptic field potential responses evoked by single electrical stimuli to the lateral olfactory tract were recorded in the ipsilateral piriform cortex before and just after each training session.

View Article and Find Full Text PDF

In this report, we investigated the electrophysiological dynamics of the neuronal circuit including the dentate gyrus during an associative task. A group of rats was trained to discriminate between a patterned electrical stimulation of the lateral olfactory tract, used as an artificial cue associated with a water reward, and a natural odor associated with a light flash. Polysynaptic field potential responses, evoked by a single electrical stimulation of the same lateral olfactory tract electrode, were recorded in the molecular layer of the ipsilateral dentate gyrus prior to and just after each training session.

View Article and Find Full Text PDF

Within the past century it has been well established that most mature neurons lose their ability to divide. Since then, it has been assumed that behavioral performance leads to synaptic changes in the brain. The existence of these potential changes has been demonstrated in numerous experiments, and different mechanisms contributing to synaptic plasticity have been discovered.

View Article and Find Full Text PDF