Publications by authors named "Chai Gopalasingam"

Na,K-ATPase is the active ion transport system that maintains the electrochemical gradients for Na and K across the plasma membrane of most animal cells. Na,K-ATPase is constituted by the association of two major subunits, a catalytic α and a glycosylated β subunit, both of which exist as different isoforms (in mammals known as α1, α2, α3, α4, β1, β2 and β3). Na,K-ATPase α and β isoforms assemble in different combinations to produce various isozymes with tissue specific expression and distinct biochemical properties.

View Article and Find Full Text PDF

Practical and conceptual barriers have kept human F-ATP synthase out of reach as a target for the treatment of human diseases. Although this situation has persisted for decades, it may change in the near future. In this review the principal functionalities of human F-ATP synthase--proton motive force / ATP interconversion, membrane bending and mitochondrial permeability transition--are surveyed in the context of their respective potential for pharmaceutical intervention.

View Article and Find Full Text PDF

Single particle cryo electron microscopy (cryo-EM) is now the major method for the determination of integral membrane protein structure. For the success of a given project the type of membrane mimetic used for extraction from the native cell membrane, purification to homogeneity and finally cryo-grid vitrification is crucial. Although small molecule amphiphiles - detergents - are the most widely used membrane mimetic, specific tailoring of detergent structure for single particle cryo-EM is rare and the demand for effective detergents not satisfied.

View Article and Find Full Text PDF

Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited.

View Article and Find Full Text PDF

Existing drugs often suffer in their effectiveness due to detrimental side effects, low binding affinity or pharmacokinetic problems. This may be overcome by the development of distinct compounds. Here, we exploit the rich structural basis of drug-bound gastric proton pump to develop compounds with strong inhibitory potency, employing a combinatorial approach utilizing deep generative models for de novo drug design with organic synthesis and cryo-EM structural analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial resistance (AMR) is a significant global health issue, with drug-resistant bacteria like Neisseria gonorrhoeae becoming harder to treat, prompting the need for new antibiotics.
  • Researchers discovered a unique allosteric inhibitory site in mitochondrial heme-copper oxidases (HCOs) that could be targeted to develop antibiotics, particularly against ceftriaxone-resistant strains of Neisseria gonorrhoeae.
  • The study combines molecular dynamics and specialized spectroscopy techniques to show how the new inhibitors block substrate access in HCOs, paving the way for innovative strategies to combat AMR.
View Article and Find Full Text PDF

Metalloproteins comprise at least a third of all proteins that utilize redox properties of transition metals on their own or as parts of cofactors. The development of third generation storage ring sources and X-ray free-electron lasers with femtosecond pulses in the first decade of the 21st century has transformed metalloprotein crystallography. In the past decade, cryogenic-electron microscopy single-particle analysis, which does not require crystallization of biological samples has been extensively utilized, particularly for membrane-bound metalloprotein systems.

View Article and Find Full Text PDF

Nitric oxide (NO) reductase from the fungus is a P450-type enzyme (P450nor) that catalyzes the reduction of NO to nitrous oxide (NO) in the global nitrogen cycle. In this enzymatic reaction, the heme-bound NO is activated by the direct hydride transfer from NADH to generate a short-lived intermediate ( ), a key state to promote N-N bond formation and N-O bond cleavage. This study applied time-resolved (TR) techniques in conjunction with photolabile-caged NO to gain direct experimental results for the characterization of the coordination and electronic structures of TR freeze-trap crystallography using an X-ray free electron laser (XFEL) reveals highly bent Fe-NO coordination in , with an elongated Fe-NO bond length (Fe-NO = 1.

View Article and Find Full Text PDF

is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from (qNOR) reported here at 3.

View Article and Find Full Text PDF

Quinol-dependent nitric oxide reductases (qNORs) are membrane-integrated, iron-containing enzymes of the denitrification pathway, which catalyze the reduction of nitric oxide (NO) to the major ozone destroying gas nitrous oxide (NO). Cryo-electron microscopy structures of active qNOR from and an activity-enhancing mutant have been determined to be at local resolutions of 3.7 and 3.

View Article and Find Full Text PDF

Copper-containing nitrite reductases (CuNiRs) that convert NO to NO via a Cu-His-Cys-Cu proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å.

View Article and Find Full Text PDF

A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2-GlgE pathway.

View Article and Find Full Text PDF