Publications by authors named "Chaenyung Cha"

Proteins, inherently biocompatible and biodegradable, face a challenge in forming stable hydrogels without external chemical crosslinkers. Here, we construct a ring-shaped trimeric SpyTag-fused Proliferating Cell Nuclear Antigen Protein (ST-PCNA) as a core protein building block, and a dumbbell-shaped tandem dimeric SpyCatcher (SC-SC) as a bridging component. Self-crosslinked PCNA/SC-SC Protein (2SP) hydrogels are successfully formed by simply mixing the solutions of ST-PCNA and SC-SC, without chemical crosslinkers.

View Article and Find Full Text PDF

Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it often disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure.

View Article and Find Full Text PDF

In order to manipulate the complex behavior of cells in a 3-dimensional (3D) environment, it is important to provide the microenvironment that can accurately portray the complexity of highly anisotropic tissue structures. However, it is technically challenging to generate a complex microenvironment using conventional biomaterials that are mostly isotropic with limited bioactivity. In this study, the gelatin-hyaluronic acid hydrogel incorporated with aqueous-dispersible, short nanofibers capable of in situ alignment is developed to emulate the native heterogeneous extracellular matrix consisting of fibrous and non-fibrous components.

View Article and Find Full Text PDF

Recently, interest in cancer immunotherapy has increased over traditional anti-cancer therapies such as chemotherapy or targeted therapy. Natural killer (NK) cells are part of the immune cell family and essential to tumor immunotherapy as they detect and kill cancer cells. However, the disadvantage of NK cells is that cell culture is difficult.

View Article and Find Full Text PDF

The accumulation of petroleum-based plastics on our planet is causing serious environmental pollution. Biodegradable plastics, promoted as eco-friendly solutions, hold the potential to address this issue. However, their impact on the environment and the mechanisms of their natural degradation remain inadequately understood.

View Article and Find Full Text PDF

The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges.

View Article and Find Full Text PDF

Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability.

View Article and Find Full Text PDF

With the emergence of soft robotics, there is a growing need to develop actuator systems that are lightweight, mechanically compliant, stimuli-responsive, and readily programmable for precise and intelligent operation. Therefore, "smart" polymeric materials that can precisely change their physicomechanical properties in response to various external stimuli (e.g.

View Article and Find Full Text PDF

Generating functional and perfusable micro-vascular networks is an important goal for the fabrication of large and three-dimensional tissues. Up to now, the fabrication of micro-vascular networks is a complicated multitask involving several different factors such as time consuming, cells survival, micro-diameter vasculature and strict alignment. Here, we propose a technique combining multi-material extrusion and ultrasound standing wave forces to create a network structure of human umbilical vein endothelial cells within a mixture of calcium alginate and decellularized extracellular matrix.

View Article and Find Full Text PDF

One of the most promising techniques for treating severe peripheral artery disease is the use of cellular tissue-engineered vascular grafts (TEVGs). This study proposes an inverse-gravity (IG) extrusion technique for creating long double-layered cellular TEVGs with diameters over 3 mm. A three-layered coaxial laminar hydrogel flow in an 8 mm-diameter pipe was realised simply by changing the extrusion direction of the hydrogel from being aligned with the direction of gravity to against it.

View Article and Find Full Text PDF

Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized.

View Article and Find Full Text PDF

As point-of-care testing (POCT) is becoming the new paradigm of medical diagnostics, there is a growing need to develop reliable POCT devices that can be conveniently operated in a minimally invasive manner. However, the clinical potential of POCT diagnostics is yet to be realized, mainly due to the limited and inconsistent amount of collected samples on these devices, undermining their accuracy. This study proposes a new biosensing platform modified with a functional polysuccinimide (PSI)-silica nanoparticle (SNP) composite system that can substantially increase the protein conjugation efficiency by modulating physicochemical interaction with proteins by several hundred percent from an unmodified device.

View Article and Find Full Text PDF

With the continued advancement in the design and engineering of hydrogels for biomedical applications, there is a growing interest in imparting stimuli-responsiveness to the hydrogels in order to control their physicomechanical properties in a more programmable manner. In this study, an in situ forming hydrogel is developed by cross-linking alginate with an elastin-like polypeptide (ELP). Lysine-rich ELP synthesized by recombinant DNA technology is reacted with alginate presenting an aldehyde via Schiff base formation, resulting in facile hydrogel formation under physiological conditions.

View Article and Find Full Text PDF

Hydrogels capable of stimuli-responsive deformation are widely explored as intelligent actuators for diverse applications. It is still a significant challenge, however, to "program" these hydrogels to undergo highly specific and extensive shape changes with precision, because the mechanical properties and deformation mechanism of the hydrogels are inherently coupled. Herein, two engineering strategies are simultaneously employed to develop thermoresponsive poly(N-isopropyl acrylamide) (PNIPAm)-based hydrogels capable of programmable actuation.

View Article and Find Full Text PDF

Multiscale polymer engineering, involving chemical modification to control their triboelectric polarities as well as physicomechanical modification to maximize charge transfer and structural durability, is paramount to developing a high-performance triboelectric nanogenerator (TENG). This report introduces a highly efficient and comprehensive strategy to engineer high-performance TENG based on multifunctional polysuccinimide (PSI). With the ability of PSI to undergo facile nucleophilic addition with amines, sodium sulfate and quaternary ammonium chlorides having opposite charged groups are conjugated to PSI in varying densities.

View Article and Find Full Text PDF

Fibrosis is one of the most frequent occurrences during one's lifetime, identified by various physiological changes including, most notably, excessive deposition of extracellular matrix (ECM). Despite its physiological importance, it is still a significant challenge to conduct a systematic investigation of tissue fibrosis, mainly due to the lack of in vitro 3D tissue model that can accurately portray the characteristic features of fibrotic events. Herein, a hybrid hydrogel system incorporating dispersible nanofibers is developed to emulate highly collagenous deposits formed within a fibrotic tissue leading to altered mechanotopographical properties.

View Article and Find Full Text PDF

Culturing autologous cells with therapeutic potential derived from a patient within a bioactive scaffold to induce functioning tissue formation is considered the ideal methodology towards realizing patient-specific regenerative medicine. Hydrogels are often employed as the scaffold material for this purpose mainly for their tunable mechanical and diffusional properties as well as presenting cell-responsive moieties. Herein, a two-fold strategy was employed to control the physicomechanical properties and microarchitecture of hydrogels to maximize the efficacy of engineered hepatic tissues.

View Article and Find Full Text PDF

Hydrogels are widely used as a 3D cell culture platform, as they can be tailored to provide suitable microenvironments to induce cellular phenotypes with physiological significance. Hydrogels are especially deemed attractive as a co-culture platform, in which two or more different types of cells are cultured together in close proximity, since the spatial distribution of different cell types can be rendered possible by advanced microfabrication schemes. Herein, programmable multilayer photolithography is employed to develop a 3D hydrogel-based co-culture system in an efficient and scalable manner, which consists of an inner microgel array containing one cell type covered by an outer hydrogel overlay containing another cell type.

View Article and Find Full Text PDF

Alginate is an abundant natural polysaccharide widely utilized in various biomedical applications. Alginate also possesses numerous hydroxyl and carboxylate functional groups that allow chemical modifications to introduce different functionalities. However, it is difficult to apply various chemical reactions to alginate due to limited solubility in organic solvents.

View Article and Find Full Text PDF

Polyaspartamide, derived from polysuccinimide (PSI), has the advantage of conveniently presenting desired functional groups by ring-opening addition of amine-based nucleophiles to the succinimidyl ring moieties of PSI. Using diamines with varying lengths of poly(ethylene glycol) linker, polyaspartamide presenting amine groups with controllable grafting density and length, namely, poly(2-hydroxyethyl aspartamide)--amino-poly(ethylene glycol) (PHEA-PEGAm) could be synthesized. This PHEA-PEGAm was then used to develop in situ forming hydrogels by Schiff base formation with aldehyde-containing alginate (Alg-ALD).

View Article and Find Full Text PDF

Tumor spheroids have been considered valuable miniaturized three dimensional (3D) tissue models for fundamental biological investigation as well as drug screening applications. Most tumor spheroids are generated utilizing the inherent aggregate behavior of tumor cells, and the effect of microenvironmental factors such as extracellular matrix (ECM) on tumor spheroid formation has not been extensively elucidated to date. Herein, uniform-sized spherical microgels encapsulated with different subtypes of breast tumor cells, based on tumor aggressiveness, are developed by flow-focusing microfluidics technology.

View Article and Find Full Text PDF

In situ forming hydrogels generated upon spontaneous and biocompatible reaction under physiological conditions are widely investigated as injectable and implantable biomaterials. However, it is still a significant challenge to control their mechanics while maintaining their gelation behavior, due to the interdependency between gelation kinetics and mechanics. Herein, physicomechanical properties of in situ forming chitosan hydrogels via Schiff base formation are tuned in a wide range, while maintaining gelation kinetics, via polymer graft architecture.

View Article and Find Full Text PDF

Despite the widespread use as platforms for various biomedical applications, engineering hydrogels to impart multifunctionality and control physical properties, while closely mimicking the native cellular microenvironment, is still a significant challenge. Herein, nanofibers consisting of hydrophilic and photocrosslinkable biopolymer and conductive polymer (i.e.

View Article and Find Full Text PDF

Bioreporters, microbial species genetically engineered to provide measurable signals in response to specific chemicals, have been widely investigated as sensors for biomedical and environmental monitoring. More specifically, the bioreporter encapsulated within a biocompatible material, such as a hydrogel that can provide a suitable microenvironment for its prolonged activity as well as efficient scalable production, has been viewed as a more broadly applicable mode of biosensors. In this study, alginate-based microbeads encapsulated with the bacterial bioreporter capable of expressing green fluorescence protein in response to nitro compounds (e.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS)-based elastomers have become the de facto platform for various biomedical applications. But the stable attachment of biomolecules to PDMS for more robust and long-term performance of the PDMS-based devices has been a significant challenge, owing to its unique physical properties (e.g.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongep7ue2rai0nkcgc2id4rot20d6erpqi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once