Publications by authors named "Chaehyuk Ko"

Proton-coupled electron transfer can occur through concerted (electron-proton transfer, EPT) or sequential mechanisms, but this distinction becomes less well-defined for photoinduced reactions. These issues have been examined with transient absorption experiments on a hydrogen-bonded complex consisting of p-nitrophenylphenol and t-butylamine. These experiments revealed two spectroscopically distinct states: the higher-energy excited state was interpreted to be a conventional intramolecular charge transfer (ICT) state within the p-nitrophenylphenol, whereas the lower-energy state was interpreted to be an ICT-EPT state, where photoexcitation resulted in both ICT and the shifting of electronic density corresponding to effective proton transfer from the phenol to the amine.

View Article and Find Full Text PDF

The nuclear-electronic orbital (NEO) approach treats specified nuclei quantum mechanically on the same level as the electrons with molecular orbital techniques. The explicitly correlated Hartree-Fock (NEO-XCHF) approach was developed to incorporate electron-nucleus dynamical correlation directly into the variational optimization of the nuclear-electronic wavefunction. In the original version of this approach, the Hartree-Fock wavefunction is multiplied by (1+Ĝ), where Ĝ is a geminal operator expressed as a sum of Gaussian type geminal functions that depend on the electron-proton distance.

View Article and Find Full Text PDF

Our picture of reactions on electronically excited states has evolved considerably in recent years, due to advances in our understanding of points of degeneracy between different electronic states, termed "conical intersections" (CIs). CIs serve as funnels for population transfer between different electronic states, and play a central role in ultrafast photochemistry. Because most practical photochemistry occurs in solution and protein environments, it is important to understand the role complex environments play in directing excited-state dynamics generally, as well as specific environmental effects on CI geometries and energies.

View Article and Find Full Text PDF

Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions.

View Article and Find Full Text PDF

The photoisomerization mechanism of the neutral form of the photoactive yellow protein (PYP) chromophore is investigated using ab initio quantum chemistry and first-principles nonadiabatic molecular dynamics (ab initio multiple spawning or AIMS). We identify the nature of the two lowest-lying excited states, characterize the short-time behavior of molecules excited directly to S2, and explain the origin of the experimentally observed wavelength-dependent photoisomerization quantum yield.

View Article and Find Full Text PDF