Publications by authors named "Chae-Eun Song"

The aim of the present study was to isolate novel lactic acid bacteria (LAB) from hairy vetch forage crop and characterize their probiotic and fermentative potential for preparing Korean cabbage kimchi. First, functional characterization of isolated strains such as antagonistic property, auto-aggregation, antibiotic susceptibility, and extracellular enzyme production was performed. The isolated Lactobacillus plantarum KCC-41 strain was able to inhibit pathogenic fungal spore formation.

View Article and Find Full Text PDF

The objective of this study was to investigate alginate microencapsulated lactic acid bacteria (LAB) fermentation quality of radish kimchi sample and its potential survivability in different acidic and alkaline environments. Initially, we isolated 45 LAB strains. One of them showed fast growth pattern with potential probiotic and antifungal activities against with a zone of inhibition calculated with 10, 8, 4mm for the 4th, 5th, and 6 day, respectively.

View Article and Find Full Text PDF

The aim of this study was to characterize paclitaxel-incorporated polysaccharide nanoparticles and evaluate their antitumor activity in vitro and in vivo. Pullulan was hydrophobically modified using acetic anhydride to make the paclitaxel-incorporated nanoparticles. Pullulan acetate (PA) was used to encapsulate paclitaxel using the nanoprecipitation method.

View Article and Find Full Text PDF

In this study, we prepared amphotericin B (AmpB)-encapsulated polymeric micelle of poly(DL-lactideco-glycolide) (PLGA) grafted-dextran (DexLG) copolymer for the cytotoxicity test. The average particle size of AmpB-encapsulated DexLG polymeric micelles was around 30 approximately 70 nm and their morphology showed spherical shapes. Since aggregation states of AmpB are related to intrinsic cytotoxicity, prevention of AmpB aggregation in aqueous solution will provide low cytotoxicity and increased antimicrobial activity for the infectious disease.

View Article and Find Full Text PDF

In this study, we prepared adriamycin (ADR)-encapsulated core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer and evaluated its antitumor activity in vitro and in vivo. The particle size of ADR-encapsulated DexLG nanoparticles was around 50-200 nm and the morphology was spherical shapes at transmission electron microscopy (TEM) observation. Since reconstitution of lyophilized nanoparticles is essential to practical use in vivo, ADR-encapsulated DexLG nanoparticles were lyophilized and reconstituted them into deionized water.

View Article and Find Full Text PDF

In this study, we prepared amphotericin B (AmpB)-encapsulated polymeric micelle of poly(d,l-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer and characterized its physicochemical properties in vitro. The average particle size of AmpB-encpasulated DexLG polymeric micelles was around 30-150nm while particle size of empty polymeric micelles was below 100nm according to the copolymer composition. The morphology of AmpB-encapsulated polymeric micelle of DexLG copolymer was spherical shapes at transmission electron microscopy (TEM) observation.

View Article and Find Full Text PDF

In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around 50 nm approximately 300 nm according to the graft ratio of PLGA.

View Article and Find Full Text PDF

Poly(DL-lactide-co-glycolide)-graft pullulan (PuLG) was synthesized to produce a hydrophobically modified polysaccharide. Specific pullulan and poly(DL-lactide-co-glycolide) (PLGA) (abbreviated as PuLG) appeared in the peaks of the PuLG spectra on (1)H NMR spectroscopy, suggesting that PLGA was successively grafted to the pullulan backbone. PuLG nanospheres have a round shape with a particle size of about 75-150 nm.

View Article and Find Full Text PDF