Publications by authors named "Chae U"

Wearable robots are increasingly being deployed for use in industrial fields. However, only a few studies have focused on the usability of wearable robots. The present study evaluated the factors affecting the usability of a harness in securing a wearable robot to the body because the harness directly affects the work efficiency, and thus its design and use require careful consideration.

View Article and Find Full Text PDF

Implantable neural probes have been extensively utilized in the fields of neurocircuitry, systems neuroscience, and brain-computer interface. However, the long-term functionality of these devices is hampered by the formation of glial scar and astrogliosis at the surface of electrodes. In this study, we administered KDS2010, a recently developed reversible MAO-B inhibitor, to mice through ad libitum drinking in order to prevent glial scar formation and astrogliosis.

View Article and Find Full Text PDF

Real-time monitoring of various neurochemicals with high spatial resolution in multiple brain regions in vivo can elucidate neural circuits related to various brain diseases. However, previous systems for monitoring neurochemicals have limitations in observing multiple neurochemicals without crosstalk in real time, and these methods cannot record electrical activity, which is essential for investigating neural circuits. Here, we present a real-time bimodal (RTBM) neural probe that uses monolithically integrated biosensors and multiple shanks to study the connectivity of neural circuits by measuring multiple neurochemicals and electrical neural activity in real time.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the foremost neurodegenerative diseases, characterized by beta-amyloid (Aβ) plaques and significant progressive memory loss. In AD, astrocytes are proposed to take up and clear Aβ plaques. However, how Aβ induces pathogenesis and memory impairment in AD remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Prx6 is an antioxidant enzyme that plays a crucial role in protecting cells from oxidative stress and regulating signaling pathways linked to cancer progression, specifically in colon cancer.
  • Prx6 influences the epithelial-mesenchymal transition (EMT) process by affecting the expression of certain genes and proteins, which can enhance cancer cell proliferation and migration.
  • Experimental results demonstrated that overexpression of Prx6 in HCT116 colon cancer cells led to increased tumor growth in mice, indicating its significant role in tumorigenesis through modulation of EMT signaling pathways.
View Article and Find Full Text PDF

Cell-type-specific, activity-dependent electrophysiology can allow in-depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics-based fluorescence recording devices enable monitoring cell-type-specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low.

View Article and Find Full Text PDF
Article Synopsis
  • - The function of neural circuits is influenced by individual neuron characteristics, their connection structure, and their activity, but past research has struggled with these correlations due to complexity.
  • - To simplify the analysis of these circuits, a new method using honeycomb-patterned 2D arrays created via microcontact printing was developed, enabling more controlled neuronal growth and easier mapping of connectivity.
  • - This innovative model, called iCANN, represents a groundbreaking experimental system for studying neural computation at the cellular level, allowing researchers to explore relationships between anatomical structure and circuit function.
View Article and Find Full Text PDF

Investigation of the chemical and electrical signals of cells in vivo is critical for studying functional connectivity and brain diseases. Most previous studies have observed either the electrical signals or the chemical signals of cells because recording electrical signals and neurochemicals are done by fundamentally different methods. Herein, we present a bimodal MEMS neural probe that is monolithically integrated with an array of microelectrodes for recording electrical activity, microfluidic channels for sampling extracellular fluid, and a microfluidic interface chip for multiple drug delivery and sample isolation from the localized region at the cellular level.

View Article and Find Full Text PDF

The minimal invasiveness of electrocorticography (ECoG) enabled its widespread use in clinical areas as well as in neuroscience research. However, most existing ECoG arrays require that the entire surface area of the brain that is to be recorded be exposed through a large craniotomy. We propose a device that overcomes this limitation, i.

View Article and Find Full Text PDF

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans.

View Article and Find Full Text PDF

Among the many factors that promote cellular senescence, reactive oxygen species (ROS) are a focus of intense research because of their critical role in accelerating cellular senescence and initiating senescence-related diseases that can be fatal. Therefore, maintaining the proper balance of ROS in cells is a key method to alleviate senescence. Recent studies have found that isocitrate dehydrogenase 2 (IDH2), a critical enzyme of the tricarboxylic acid cycle, participates in ROS generation and in cellular dysfunction that is induced by excessive levels of ROS.

View Article and Find Full Text PDF

Investigation and modulation of neural circuits in vivo at the cellular level are very important for studying functional connectivity in a brain. Recently, neural probes with stimulation capabilities have been introduced, and they provided an opportunity for studying neural activities at a specific region in the brain using various stimuli. However, previous methods have a limitation in dissecting long-range neural circuits due to inherent limitations on their designs.

View Article and Find Full Text PDF

In cancer, activation of X-box binding protein (XBP1) has a critical role in tumorigenesis and cancer progression. Transcriptional regulatory mechanism of XBP1 in cancer development has been well known, however, regulation of ubiquitination and degradation of XBP1 has not been elucidated yet. Here we show that Fbw7, a substrate recognition component of the SKP1-Cullin-F-box-type E3 ligase, interacts with XBP1 in a phosphorylation-dependent manner, and facilitates XBP1 ubiquitination and protein degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons use axons to reach their targets, influenced by attractive or repulsive cues, but the decision-making process of growth cones when encountering repulsive signals is not fully understood.
  • Researchers created a microcontact printing culture system to isolate axonal tips in a permissive area surrounded by the repulsive signal semaphorin 3F, which affected axon growth rates and patterns.
  • The study found that axonal tips could "jump" over repulsive signals to grow straight, influenced by the spacing of the permissive dots and intracellular signaling, suggesting the system could be useful for studying factors affecting axonal growth.
View Article and Find Full Text PDF

Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation.

View Article and Find Full Text PDF

In various neuronal diseases, the activation of microglia contributes to the production of excessive neurotoxic factors, such as pro-inflammatory mediators. In particular, the overproduction of pro-inflammatory cytokines and nitric oxide (NO) has critical effects on the development of neurodegenerative diseases and gliomas in the brain. Recent studies have suggested that isocitrate dehydrogenase 2 (IDH2) plays a key role in inducing gliomas and neurodegeneration.

View Article and Find Full Text PDF

Insulin signaling is essential for regulating glucose homeostasis. Numerous studies have demonstrated that reactive oxygen species (ROS) affect insulin signaling, and low ROS levels can act as a signal to regulate cellular function. Peroxiredoxins (Prxs) are highly abundant and widely expressed antioxidant enzymes.

View Article and Find Full Text PDF

Spinal deformities such as scoliosis and kyphosis are incurable, and can lead to decreased physical function, pain, and reduced quality of life. Despite much effort, no clear therapies for the treatment of these conditions have been found. Therefore, the development of an animal model for spinal deformity would be extremely valuable to our understanding of vertebral diseases.

View Article and Find Full Text PDF

Coronary arteriovenous fistula (CAVF) is a rare condition defined as an anomalous termination of the coronary arteries. The etiology of CAVF is either congenital or acquired, and iatrogenic CAVF is most commonly caused by cardiovascular surgery or percutaneous intervention. Most of the prenatally diagnosed CAVFs were related to complex heart disease, and only few cases of an isolated CAVF have been reported to date.

View Article and Find Full Text PDF

Objectives: Chrysophanol, also called chrysophanic acid, is a natural anthraquinone compound found in Rheum palmatum. R. palmatum has been used in oriental medicine in ancient East Asia.

View Article and Find Full Text PDF

Chrysophanic acid, or chrysophanol, is an anthraquinone found in Rheum palmatum, which was used in the preparation of oriental medicine in ancient China. The hippocampus plays a major role in controlling the activities of the short- and long-term memory. It is one of the major regions affected by excessive cell death in Alzheimer's disease.

View Article and Find Full Text PDF

Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects.

View Article and Find Full Text PDF

Oleuropein is a primary phenolic compound found in olive leaf and Fraxinus rhynchophylla. Here, we investigated the impact of oleuropein on LPS-induced BV-2 microglial cells. Oleuropein suppressed the LPS-induced increase in pro-inflammatory mediators, such as nitric oxide, and pro-inflammatory cytokines, via inhibition of ERK/p38/NF-κB activation and reactive oxygen species (ROS) generation.

View Article and Find Full Text PDF

Aims: Aberrant Cdk5 (cyclin-dependent kinase 5) and oxidative stress are crucial components of diverse neurodegenerative disorders, including Alzheimer's disease (AD). We previously reported that a change in peroxiredoxin (Prx) expression is associated with protection from neuronal death. The aim of the current study was to analyze the role of Prx in regulating Cdk5 activation in AD.

View Article and Find Full Text PDF