Publications by authors named "Chae Oh Lim"

Article Synopsis
  • - The study focuses on BAG2 (AtBAG2) proteins in plants, which help regulate defenses against various stresses, but their specific roles were previously unclear.
  • - Researchers used mutant plants and transgenic yeast to show that AtBAG2 provides heat stress resistance, with mutant plants being more vulnerable compared to yeast with the AtBAG2 protein, which displayed high thermotolerance.
  • - Biochemical analyses revealed that AtBAG2 has molecular chaperone activity due to its BAG domain, indicating its crucial role in helping Arabidopsis cope with heat stress.
View Article and Find Full Text PDF

Fenitrothion is an insecticide belonging to the organophosphate family of pesticides that is widely used around the world in agriculture and living environments. Today, it is one of the most hazardous chemicals that causes severe environmental pollution. However, detection of fenitrothion residues in the environment is considered a significant challenge due to the small molecule nature of the insecticide and lack of molecular recognition elements that can detect it with high specificity.

View Article and Find Full Text PDF

Under normal growth conditions, Arabidopsis VOZ1 interacts with DREB2C and acts as a transcriptional repressor by reducing DNA binding of DREB2C. Under heat stress conditions, VOZ1 is degraded by ubiquitination, and DREB2C, which is freed from VOZ1, functions as a transcription activator. To investigate the mechanism by which the DEHYDRATION-RESPONSIVE ELEMENT-BINDING FACTOR 2C (DREB2C)-dependent signaling cascade regulates heat stress (HS) responses, we performed a yeast two-hybrid screening using the DREB2C APETALA2 (AP2) DNA-binding domain as the bait against a cDNA library derived from Arabidopsis.

View Article and Find Full Text PDF

Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from , which was designated AtCYS5. RT-qPCR analysis showed that the expression of in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment.

View Article and Find Full Text PDF

Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB).

View Article and Find Full Text PDF

ZAT11, a Zinc Finger of Arabidopsis Thaliana 11, is a dual-function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni (2+) tolerance. Zinc Finger of Arabidopsis Thaliana 11 (ZAT11) is a C2H2-type zinc finger protein that has been reported to function as an active transcriptional repressor. However, the biological function of ZAT11 remains unknown.

View Article and Find Full Text PDF

Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects.

View Article and Find Full Text PDF

DREB2C acts as a transcriptional activator of the salt tolerance-related COLD - REGULATED 15A gene. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 2C (DREB2C) regulates plant responses to heat stress. We report here that DREB2C is induced by NaCl stress in Arabidopsis, based on quantitative RT-PCR analyses of transcript levels and DREB2C promoter-controlled GUS activity assays.

View Article and Find Full Text PDF

Phytocystatins are proteinaceous inhibitors of cysteine proteases. They have been implicated in the regulation of plant protein turnover and in defense against pathogens and insects. Here, we have characterized an Arabidopsis phytocystatin family gene, Arabidopsis thaliana phytocystatin 4 (AtCYS4).

View Article and Find Full Text PDF

The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins, which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF) domain. To identify the expression pattern of the DREB2C gene, which contains multiple transcription cis-regulatory elements in its promoter, an approximately 1.4 kb upstream DREB2C sequence was fused to the β-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6.

View Article and Find Full Text PDF

Dehydration-responsive element-binding proteins (DREBs)regulate plant responses to environmental stresses. In the current study, transcription of DREB2C, a class 2 Arabidopsis DREB, was induced by a superoxide anion propagator, methyl viologen (MV). The oxidative stress tolerance of DREB2C-overexpressing transgenic plants was significantly greater than that of wild-type plants, as measured by ion leakage and chlorophyll fluorescence under light conditions.

View Article and Find Full Text PDF

Background: The C2 domain is a Ca(2+)/phospholipid-binding motif found in many proteins involved in signal transduction or membrane trafficking. OsERG3 is a homolog of OsERG1, a gene encoding a small C2-domain protein in rice.

Methods: OsERG3 Ca(2+)-binding and phospholipid-binding assays were carried out using (3)H-labeled phospholipid liposomes and a (45)Ca(2+) overlay assay, respectively.

View Article and Find Full Text PDF

Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively.

View Article and Find Full Text PDF

The dehydration-responsive element binding protein (DREB) family is important in regulating plant responses to abiotic stresses. DREB2C is one of the Arabidopsis class 2 DREBs and is induced by heat stress (HS). Here, we present data concerning the interaction of DREB2C with heat shock factor A3 (HsfA3) in the HS signal transduction cascade.

View Article and Find Full Text PDF

Plants express many calmodulins (CaMs) and calmodulin-like (CML) proteins that sense and transduce different Ca(2+) signals. Previously, we reported divergent soybean (Glycine max) CaM isoforms (GmCaM4/5) with differential abilities to activate CaM-dependent enzymes. To elucidate biological functions of divergent CaM proteins, we isolated a cDNA encoding a CML protein, AtCML8, from Arabidopsis.

View Article and Find Full Text PDF

The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter.

View Article and Find Full Text PDF

The promoters of OsCaM1 and OsCaM3 were characterized after sequencing and fused to the reporter gene, GUS. The constructs were then transformed into the tobacco plant. Histochemical analysis of GUS showed different expression patterns in pOsCaM1::GUS and pOsCaM3:: GUS transgenic plants.

View Article and Find Full Text PDF

Many plant hormones are involved in coordinating the growth responses of plants under stress. However, not many mechanistic studies have explored how plants maintain the balance between growth and stress responses. Brassinosteroids (BRs), plant-specific steroid hormones, affect many aspects of plant growth and development over a plant's lifetime.

View Article and Find Full Text PDF

Cadmium (Cd) is a non-essential heavy metal that is recognized as a major environmental pollutant. While Cd responses and toxicities in some plant species have been well established, there are few reports about the effects of short-term exposure to Cd on rice, a model monocotyledonous plant, at the proteome level. To investigate the effect of Cd in rice, we monitored the influence of Cd exposure on root and leaf proteomes.

View Article and Find Full Text PDF

Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers.

View Article and Find Full Text PDF

Plant cells contain several thioredoxin isoforms that are characterized by subcellular localization and substrate specificity. Here, we describe the functional characterization of a rice (Oryza sativa) thioredoxin m isoform (Ostrxm) using a reverse genetics technique. Ostrxm showed green tissue-specific and light-responsive mRNA expression.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identified CONSTANS (CO), a key player in floral induction, as an interacting partner of OBF4, specifically binding to CO’s B-box region.
  • * OBF4 mRNA levels fluctuate daily, peaking at night, and OBF4 binds to the FLOWERING LOCUS T (FT) gene promoter, indicating its potential role in connecting plant defense mechanisms to flowering processes.
View Article and Find Full Text PDF
Article Synopsis
  • LONG HYPOCOTYL5 (HY5) is a transcription factor in Arabidopsis that regulates light responses and root development, while the soybean protein STF1 shows similar functions as a homolog.
  • Transgenic Arabidopsis plants overexpressing STF1 displayed restored normal growth patterns in the presence of light, indicating STF1's role in signaling pathways for hormones and light, much like HY5.
  • Both STF1 and HY5 have similar DNA-binding properties, targeting specific sequences (ACGT motifs) in gene promoters to establish their interaction criteria, which helps in predicting natural binding sites for HY5 in the genome.
View Article and Find Full Text PDF

Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates diverse cellular functions by modulating the activity of a variety of proteins. However, little is known about how CaM directly regulates transcription. Screening of an Arabidopsis cDNA expression library using horseradish peroxidase-conjugated calmodulin as a probe identified a calmodulin-binding NAC protein (CBNAC).

View Article and Find Full Text PDF