Publications by authors named "Chae Bin Kim"

Surfactant-based wet spinning is a promising route toward the eco-friendly production of carbon nanotube fibers (CNTFs). However, currently, the properties of surfactant-based wet-spun CNTFs lag behind those produced by other methods, indicating the need for further understanding and research. Here, we explored the surface characteristics of carbon nanotubes (CNTs) that are advantageous for the properties of CNTFs produced by wet spinning, using sodium cholate as a surfactant.

View Article and Find Full Text PDF

Capillary suspensions are ternary solid-liquid-liquid systems produced via the addition of a small amount of secondary fluid to the bulk fluid that contained the dispersed solid particles. The secondary fluid could exert strong capillary forces between the particles and dramatically change the rheological properties of the suspension. So far, research has focused on capillary suspensions that consist of additive-free fluids, whereas capillary suspensions with additives, particularly those of large molecular weight that are highly relevant for industrial purposes, have been relatively less studied.

View Article and Find Full Text PDF

Nanoparticles (NPs) may have great potential for various subsurface applications, including oil and gas recovery, reservoir imaging, and environmental remediation. One of the important challenges for these downhole applications is to achieve colloidal stability in subsurface media at high salinity and high temperature. It has been previously shown that several functional NPs "multipoint"-grafted with anionic poly(2-acrylamido-2-methyl-1-propanesulfonate--acrylic acid; AMPS--AA) exhibited remarkable colloidal stabilities in specific environments mimicking the harsh subsurface aquatic media, such as the American Petroleum Institute (API) brine.

View Article and Find Full Text PDF

Techniques to isolate the small RNA fraction (<200nt) by column-based methods are commercially available. However, their use is limited because of the relatively high cost. We found that large RNA molecules, including mRNAs and rRNAs, are aggregated together in the presence of salts when RNA pellets are over-dried.

View Article and Find Full Text PDF

We herein report a facile and scalable approach to manufacturing optically transparent and heat-insulating films by incorporating hollow poly(methyl methacrylate) microcapsules into a transparent polymeric matrix. The microcapsule was prepared emulsion polymerization. The size of the microcapsules could be easily controlled from ∼1 to 3 μm by varying the polymerization time in a narrow size distribution.

View Article and Find Full Text PDF

To develop an advanced heat transfer composite, a deeper understanding of the interfacial correlation between matrix and filler is of paramount importance. To verify the effect of interfacial correlations on the thermal conductivity, the conductive fillers such as expanded graphite (EG) and boron nitride (BN) are introduced in the discotic liquid crystal (DLC)-based polymeric matrix. The DLC matrix exhibits better interfacial affinity with EG compared to BN because of the strong π-π interactions between EG and DLC.

View Article and Find Full Text PDF

We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %).

View Article and Find Full Text PDF

The coordination chemistry of plant polyphenols and metal ions can be used for coating various substrates and for creating modular superstructures. We herein explored this chemistry for the controlled release of guests from mesoporous silica nanoparticles (MSNs). The selective adsorption of tannic acids (TAs) on MSN silica walls opens the MSN mesoporous channels without disturbing mass transport.

View Article and Find Full Text PDF

Versatile and spatiotemporally controlled methods for decorating surfaces with monolayers of attached polymers are broadly impactful to many technological applications. However, current materials are usually designed for very specific polymer/surface chemistries and, as a consequence, are not very broadly applicable and/or do not rapidly respond to high-resolution stimuli such as light. We describe here the use of a polymeric adhesion layer, poly(styrene sulfonyl azide-alt-maleic anhydride) (PSSMA), which is capable of immobilizing a 1-7 nm thick monolayer of preformed, inert polymers via photochemical grafting reactions.

View Article and Find Full Text PDF

Nature has engineered universal, catechol-containing adhesives which can be synthetically mimicked in the form of polydopamine (PDA). In this study, PDA was exploited to enable the formation of block copolymer (BCP) nanopatterns on a variety of soft material surfaces. While conventional PDA coating times (1 h) produce a layer too rough for most applications of BCP nanopatterning, we found that these substrates could be polished by bath sonication in a weakly basic solution to form a conformal, smooth (root-mean-square roughness ∼0.

View Article and Find Full Text PDF

A Marangoni flow is shown to occur when a polymer film possessing a spatially-defined surface energy pattern is heated above its glass transition to the liquid state. This can be harnessed to rapidly manufacture polymer films possessing prescribed height profiles. To quantify and verify this phenomenon, a model is described here which accurately predicts the formation, growth, and eventual dissipation of topographical features.

View Article and Find Full Text PDF