Publications by authors named "Chadwick Ward"

Introduction: Recent technological advances have increased the risk that de-identified brain images could be re-identified from face imagery. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a leading source of publicly available de-identified brain imaging, who quickly acted to protect participants' privacy.

Methods: An independent expert committee evaluated 11 face-deidentification ("de-facing") methods and selected four for formal testing.

View Article and Find Full Text PDF

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex.

View Article and Find Full Text PDF

Objective: To systematically evaluate structural MRI and diffusion MRI features for cross-sectional discrimination and tracking of longitudinal disease progression in early multiple system atrophy (MSA).

Methods: In a prospective, longitudinal study of synucleinopathies with imaging on 14 controls and 29 MSA patients recruited at an early disease stage (15 predominant cerebellar ataxia subtype or MSA-C and 14 predominant parkinsonism subtype or MSA-P), we computed regional morphometric and diffusion MRI features. We identified morphometric features by ranking them based on their ability to distinguish MSA-C from controls and MSA-P from controls and evaluated diffusion changes in these regions.

View Article and Find Full Text PDF

Objective: To report population age-specific prevalence of core cerebrovascular disease lesions (infarctions, cerebral microbleeds, and white-matter hyperintensities detected with magnetic resonance imaging); estimate cut points for white-matter hyperintensity positivity; investigate sex differences in prevalence; and estimate prevalence of any core cerebrovascular disease features.

Patients And Methods: Participants in the population-based Mayo Clinic Study of Aging aged 50 to 89 years underwent fluid-attenuated inversion recovery and T2* gradient-recalled echo magnetic resonance imaging to assess cerebrovascular disease between October 10, 2011, and September 29, 2017. We characterized each participant as having infarct, normal versus abnormal white-matter hyperintensity, cerebral microbleed, or a combination of lesions.

View Article and Find Full Text PDF

Although white matter hyperintensities have traditionally been viewed as a marker of vascular disease, recent pathology studies have found an association between white matter hyperintensities and Alzheimer's disease pathologies. The objectives of this study were to investigate the topographic patterns of white matter hyperintensities associated with Alzheimer's disease biomarkers measured using PET. From the population-based Mayo Clinic Study of Aging, 434 participants without dementia (55% male) with FLAIR and gradient recall echo MRI, tau-PET (AV-1451) and amyloid-PET scans were identified.

View Article and Find Full Text PDF

Alzheimer's disease (AD) researchers commonly use MRI as a quantitative measure of disease severity. Historically, hippocampal volume has been favored. Recently, "AD signature" measurements of gray matter (GM) volumes or cortical thicknesses have gained attention.

View Article and Find Full Text PDF

The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency.

Materials And Methods: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images.

View Article and Find Full Text PDF

The objectives of this study are as follows: to describe practical implementation challenges of multisite, multivendor quantitative studies; to describe the MRI phantom and analysis software used in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, illustrate the utility of the system for measuring scanner performance, the ability to assess gradient field nonlinearity corrections: and to recover human brain images without geometric scaling errors in multisite studies. ADNI is a large multicenter study with each center having its own copy of the phantom. The design of the phantom and analysis software are presented as results from predistribution systematics studies and results from field experience with the phantom at 58 enrolling ADNI sites over a 3 year period.

View Article and Find Full Text PDF

MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI.

View Article and Find Full Text PDF

Tensor-based morphometry can recover three-dimensional longitudinal brain changes over time by nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of the ADNI dataset consisting of 20 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with mild cognitive impairment (MCI). Each individual longitudinal change map (Jacobian map) was created using an unbiased registration technique, and spatially normalized to a geometrically-centered average image based on healthy controls.

View Article and Find Full Text PDF

Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.

View Article and Find Full Text PDF

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimer's disease. Magnetic resonance imaging (MRI), (18F)-fluorodeoxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquired at multiple time points. All data will be cross-linked and made available to the general scientific community.

View Article and Find Full Text PDF

The vitamin E and donepezil trial for the treatment of amnestic mild cognitive impairment (MCI) was conducted at 69 centers in North America; 24 centers participated in an MRI sub study. The objective of this study was to evaluate the effect of treatment on MRI atrophy rates; and validate rate measures from serial MRI as indicators of disease progression in multi center therapeutic trials for MCI. Annual percent change (APC) from baseline to follow-up was measured for hippocampus, entorhinal cortex, whole brain, and ventricle in the 131 subjects who remained in the treatment study and completed technically satisfactory baseline and follow-up scans.

View Article and Find Full Text PDF

Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials.

View Article and Find Full Text PDF

Measuring rates of brain atrophy from serial magnetic resonance imaging (MRI) studies is an attractive way to assess disease progression in neurodegenerative disorders, particularly Alzheimer's disease (AD). A widely recognized approach is the boundary shift integral (BSI). The objective of this study was to evaluate how several common scan non-idealities affect the output of the BSI algorithm.

View Article and Find Full Text PDF