Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions.
View Article and Find Full Text PDFEnergy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions.
View Article and Find Full Text PDFCellular metabolism is regulated over space and time to ensure that energy production is efficiently matched with consumption. Fluorescent biosensors are useful tools for studying metabolism as they enable real-time detection of metabolite abundance with single-cell resolution. For monitoring glycolysis, the intermediate fructose 1,6-bisphosphate (FBP) is a particularly informative signal as its concentration is strongly correlated with flux through the whole pathway.
View Article and Find Full Text PDFMotivated by the growing importance of single fluorescent protein biosensors (SFPBs) in biological research and the difficulty in rationally engineering these tools, we sought to increase the rate at which SFPB designs can be optimized. SFPBs generally consist of three components: a circularly permuted fluorescent protein, a ligand-binding domain, and linkers connecting the two domains. In the absence of predictive methods for biosensor engineering, most designs combining these three components will fail to produce allosteric coupling between ligand binding and fluorescence emission.
View Article and Find Full Text PDFAxon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD, nicotinamide mononucleotide (NMN), rather than loss of NAD, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration.
View Article and Find Full Text PDF