Publications by authors named "Chadi El Farran"

Isocitrate dehydrogenase (IDH) mutants define a class of gliomas that are initially slow-growing but inevitably progress to fatal disease. To characterize their malignant cell hierarchy, we profiled chromatin accessibility and gene expression across single cells from low-grade and high-grade IDH-mutant gliomas and ascertained their developmental states through a comparison to normal brain cells. We provide evidence that these tumors are initially fueled by slow-cycling oligodendrocyte progenitor cell-like cells.

View Article and Find Full Text PDF

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin.

View Article and Find Full Text PDF

Gliomas are incurable malignancies notable for an immunosuppressive microenvironment with abundant myeloid cells whose immunomodulatory properties remain poorly defined. Here, utilizing scRNA-seq data for 183,062 myeloid cells from 85 human tumors, we discover that nearly all glioma-associated myeloid cells express at least one of four immunomodulatory activity programs: Scavenger Immunosuppressive, C1Q Immunosuppressive, CXCR4 Inflammatory, and IL1B Inflammatory. All four programs are present in IDH1 mutant and wild-type gliomas and are expressed in macrophages, monocytes, and microglia whether of blood or resident myeloid cell origins.

View Article and Find Full Text PDF
Article Synopsis
  • Amplification of MDM2 on extra chromosomes is a frequent way tumors inactivate the P53 protein, which is crucial for controlling cell growth and preventing cancer.
  • In dedifferentiated liposarcoma, MDM2 overexpression affects gene regulation and cell characteristics through three main regulatory circuits and interacts with other transcription factors.
  • There is significant variability in MDM2 levels within tumor cells, and while most liposarcoma cells respond to MDM2 inhibitors combined with pro-apoptotic drugs, those with high MDM2 levels tend to resist these treatments, leading to poor clinical outcomes.
View Article and Find Full Text PDF

Chromatin regulators are frequently mutated in human cancer and are attractive drug targets. They include diverse proteins that share functional domains and assemble into related multi-subunit complexes. To investigate functional relationships among these regulators, here we apply combinatorial CRISPR knockouts (KOs) to test over 35,000 gene-gene pairings in leukemia cells, using a library of over 300,000 constructs.

View Article and Find Full Text PDF
Article Synopsis
  • SETDB1 is a crucial regulator of specific genes and retroviral elements by adding a repressive mark (H3K9me3), but its other roles have been less explored.
  • A study in mouse embryonic stem cells found regions lacking typical repressive histone marks, enriched with the CTCF motif and linked to the Cohesin complex, leading to the discovery of specific domains called DiSCs.
  • SETDB1 and Cohesin work together to control gene expression and genome structure at these DiSCs; removing SETDB1 disrupts Cohesin binding and affects gene regulation, highlighting its role in stem cell maintenance and differentiation.
View Article and Find Full Text PDF

The combination of single-cell transcriptomics with mitochondrial DNA variant detection can be used to establish lineage relationships in primary human cells, but current methods are not scalable to interrogate complex tissues. Here, we combine common 3' single-cell RNA-sequencing protocols with mitochondrial transcriptome enrichment to increase coverage by more than 50-fold, enabling high-confidence mutation detection. The method successfully identifies skewed immune-cell expansions in primary human clonal hematopoiesis.

View Article and Find Full Text PDF

Vemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression. Sequence analysis of drug-resistant tumor cells and functional genomic screens has identified several genes that regulate vemurafenib resistance.

View Article and Find Full Text PDF

Cellular reprogramming suffers from low efficiency especially for the human cells. To deconstruct the heterogeneity and unravel the mechanisms for successful reprogramming, we adopted single-cell RNA sequencing (scRNA-Seq) and single-cell assay for transposase-accessible chromatin (scATAC-Seq) to profile reprogramming cells across various time points. Our analysis revealed that reprogramming cells proceed in an asynchronous trajectory and diversify into heterogeneous subpopulations.

View Article and Find Full Text PDF

H3.3 is a histone variant, which is deposited on genebodies and regulatory elements, by Hira, marking active transcription. Moreover, H3.

View Article and Find Full Text PDF
Article Synopsis
  • Embryonic stem cells (ESCs) can self-renew and differentiate into any cell type from the three germ layers, while somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs).
  • Advances in gene editing techniques like CRISPR and TALENs have improved the efficiency of making precise changes in genomes.
  • Combining somatic cell reprogramming with gene editing allows for better in vitro modeling of human diseases compared to traditional animal models, and the review highlights current strategies, advancements, and challenges in this area.
View Article and Find Full Text PDF

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing.

View Article and Find Full Text PDF

O-linked-N-acetylglucosamine (O-GlcNAc) post-translationally modifies and regulates thousands of proteins involved in various cellular mechanisms. Recently, O-GlcNAc has been linked to human embryonic stem cells (hESC) differentiation, however the identity and function of O-GlcNAc proteins regulating hESC remain unknown. Here, we firstly identified O-GlcNAc modified human stem cell regulators such as hnRNP K, HP1γ, and especially RING1B/RNF2.

View Article and Find Full Text PDF