Purpose: Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel.
Methods: Three 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer at lower field-strengths.
Gradient-recalled echo (GRE) echo-planar imaging (EPI) is an efficient MRI pulse sequence that is commonly used for several enticing applications, including functional MRI (fMRI), susceptibility-weighted imaging (SWI), and proton resonance frequency (PRF) thermometry. These applications are typically not performed in the mid-field (<1 T) as longer T* and lower polarization present significant challenges. However, recent developments of mid-field scanners equipped with high-performance gradient sets offer the possibility to re-evaluate the feasibility of these applications.
View Article and Find Full Text PDFA gradient coil with integrated second and third order shims has been designed and constructed for use inside an actively shielded 310 mm horizontal bore 9.4 T small animal MRI. An extension of the boundary element method, to minimise the power deposited in conducting surfaces, was used to design the gradients, and a boundary element method with a constraint on mutual inductance was used to design the shims.
View Article and Find Full Text PDFThis study quantified the spin-lattice relaxation rate (R ) dispersion of murine tissues from 0.24 mT to 3 T. A combination of ex vivo and in vivo spin-lattice relaxation rate measurements were acquired for murine tissue.
View Article and Find Full Text PDFPurpose: To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms.
Methods: One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains.
Purpose: Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.
View Article and Find Full Text PDFPurpose: To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging.
Materials And Methods: The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods.
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding.
View Article and Find Full Text PDFPurpose: Magnetic field homogeneity is important in all aspects of magnetic resonance imaging. A new approach to increase field homogeneity is presented that allows dynamic and adaptive control over the flow of current over a single surface using a network of actively controlled solid-state switches.
Methods: Computer simulations were completed demonstrating the potential of this approach.
Diffusion-weighted imaging suffers from motion artifacts and relatively low signal quality due to the long echo times required to permit the diffusion encoding. We investigated the inclusion of a noncylindrical fourth gradient coil, dedicated entirely to diffusion encoding, into the imaging system. Standard three-axis whole body gradients were used during image acquisition, but we designed and constructed an insert coil to perform diffusion encodings.
View Article and Find Full Text PDF