Publications by authors named "Chad Schaber"

The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.

View Article and Find Full Text PDF

Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body.

View Article and Find Full Text PDF

In this report, we present a post hoc analysis from two observational cohorts, comparing the global breath volatile profile captured when using polymer sampling bags (mixed breath) versus Bio-VOC™ (alveolar breath). The cohorts were originally designed to characterize the breath volatile profiles of Malawian children with and without uncomplicated falciparum malaria. Children aged 3-15 years were recruited from ambulatory pediatric centers in Lilongwe, Malawi.

View Article and Find Full Text PDF

Current evidence suggests that malarial infection could alter metabolites in the breath of patients, a phenomenon that could be exploited to create a breath-based diagnostic test. However, no study has explored this in a clinical setting. To investigate whether natural human malarial infection leads to a characteristic breath profile, we performed a field study in Malawi.

View Article and Find Full Text PDF

Severe malaria due to Plasmodium falciparum infection remains a serious threat to health worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors indicate that protein prenylation is required for malaria parasite development.

View Article and Find Full Text PDF

Unlabelled: The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites.

View Article and Find Full Text PDF