Transcription factor AP2 gamma (TFAP2C) is a well-established regulator of the trophoblast lineage in mice and humans, but a handful of studies indicate that TFAP2C may play an important role in pluripotency. Here, we hypothesize and provide new evidence that TFAP2C functions as an activator of trophoblast and pluripotency genes during preimplantation embryo development.
View Article and Find Full Text PDFThe anti-Müllerian hormone (AMH) produced by the granulosa cells of growing follicles is critical for folliculogenesis and is clinically used as a diagnostic and prognostic marker of female fertility. Previous studies report that AMH-pretreatment in mice creates a pool of quiescent follicles that are released following superovulation, resulting in an increased number of ovulated oocytes. However, the quality and developmental competency of oocytes derived from AMH-induced accumulated follicles as well as the effect of AMH treatment on live birth are not known.
View Article and Find Full Text PDFIn mammals, the first cell-fate decision occurs during preimplantation embryo development when the inner cell mass (ICM) and trophectoderm (TE) lineages are established. The ICM develops into the embryo proper, while the TE lineage forms the placenta. The underlying molecular mechanisms that govern lineage formation involve cell-to-cell interactions, cell polarization, cell signaling and transcriptional regulation.
View Article and Find Full Text PDF