The accumulation of plastic debris that concentrates hydrophobic compounds and microbial communities creates the potential for altered aquatic biogeochemical cycles. This study investigated the role of plastic debris in the biogeochemical cycling of mercury in surface waters of the San Francisco Bay, Sacramento River, Lake Erie, and in coastal seawater. Total mercury and monomethylmercury were measured on plastic debris from all study sites.
View Article and Find Full Text PDFThe focus of this paper is to briefly discuss the major advances in scientific thinking regarding: a) processes governing the fate and transport of mercury in the environment; b) advances in measurement methods; and c) how these advances in knowledge fit in within the context of the Minamata Convention on Mercury. Details regarding the information summarized here can be found in the papers associated with this Virtual Special Issue of STOTEN.
View Article and Find Full Text PDFHuman activities have increased nutrient loadings to aquatic ecosystems, especially during the past century. During low river flow in late summer and early fall, elevated concentrations of phosphorus (P) and nitrogen are present in the temperate Lower Great Miami River and contribute to its eutrophication. Although wastewater treatment plants are suspected of being major sources of P to the river, riverbed sediment has not been examined as an additional potential source of P.
View Article and Find Full Text PDFWastewater-treatment plants (WWTPs) are an important source of mercury (Hg) to surface waters, but little is known about temporal variability of efflux to aquatic systems. We found that Hg concentrations in effluent varied by about a factor of 2 on monthly, weekly, and hourly timescale comparisons. These results suggest that limited sampling can yield a representative concentration with reasonable uncertainty for purposes of estimating the environmental significance of Hg from WWTPs.
View Article and Find Full Text PDFLaboratory testing of sediments frequently involves manipulation by amendment with contaminants and homogenization, which changes the physicochemical structure of sediments. These changes can influence the bioavailability of divalent metals, and field and mesocosm experiments have shown that laboratory-derived thresholds are often overly conservative. We assessed the mechanisms that lead to divergence between laboratory- and field-derived thresholds; specifically, we assessed the importance of slow equilibration to solid-phase ligands and vertical stratification.
View Article and Find Full Text PDFHistorical reconstruction of mercury (Hg) accumulation in natural archives, especially lake sediments, has been essential to understanding human perturbation of the global Hg cycle. Here we present a high-resolution chronology of Hg accumulation between 1727 and 1996 in a varved sediment core from the Pettaquamscutt River Estuary (PRE), Rhode Island. Mercury accumulation is examined relative to (1) historic deposition of polycyclic aromatic hydrocarbons (PAHs) and lead (Pb) and its isotopes (Pb/Pb) in the same core, and (2) other reconstructions of Hg deposition in urban and remote settings.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2016
Recent models of global mercury (Hg) cycling have identified the downward flux of sinking particles in the ocean as a prominent Hg removal process from the ocean. At least one of these models estimates the amount of anthropogenic Hg in the ocean to be about 400 Mmol, with deep water formation and sinking fluxes representing the largest vectors by which pollutant Hg is able to penetrate the ocean interior. Using data from recent cruises to the Atlantic, we examined the dissolved and particulate partitioning of Hg in the oceanic water column as a cross-check on the hypothesis that sinking particle fluxes are important.
View Article and Find Full Text PDFMercury bioaccumulation is frequently observed in marine ecosystems, often with stronger effects at higher trophic levels. We compared total mercury (THg) and methylmercury (MeHg) from muscle with length, comparative isotopic niche, and diet (via δC and δN) among four sympatric coastal sharks in Florida Bay (USA): blacknose, blacktip, bull, and lemon. Mercury in blacknose and blacktip sharks increased significantly with size, whereas bull and lemon sharks had a high variance in mercury relative to size.
View Article and Find Full Text PDFMetals in sediment can be complexed by minerals, partition between solid and aqueous phases, and cause toxicity at high concentrations. We studied how the oxidation of surface sediment that occurs during aging alters the partitioning and toxicity of Ni. Two sediments (Burntwood and Raisin) were amended with Ni, equilibrated, incubated in a flow-through flume, and examined for sediment physicochemistry and toxicity to Hyalella azteca (7 day growth).
View Article and Find Full Text PDFPeriphyton uptake of bioaccumulative methylmercury (MeHg) may be an important entryway into the food web of many stream ecosystems where periphyton can be dominant primary producers. The net production of MeHg in stream sediment, its bioaccumulation in periphyton, and the potential toxicity of divalent Hg (Hg[II]) and MeHg in sediment to periphyton were investigated with a 67-d in situ incubation experiment using chemical exposure substrates containing either a fine-grained, organic-rich or a sandy, low-organic sediment, each amended with varying concentrations of mercuric chloride. Methylmercury was produced in sediment, and concentrations increased with greater amounts of added Hg(II); however, the net production of MeHg was inhibited in the highest Hg(II) treatments of both sediments.
View Article and Find Full Text PDFNickel bioavailability is reduced in the presence of dissolved organic carbon (DOC), suspended solids (TSS), and other complexing ligands; however, no studies have examined the relative importance of Ni exposure through different compartments (water, sediment, food). Hyalella azteca and Lymnaea stagnalis were exposed to Ni-amended water, sediment, and food, either separately or in combination. Both organisms experienced survival and growth effects in several Ni compartment tests.
View Article and Find Full Text PDFTo better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers.
View Article and Find Full Text PDFSediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms.
View Article and Find Full Text PDFTerrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields.
View Article and Find Full Text PDFOpposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.
View Article and Find Full Text PDFThe bioavailability of transition metals in sediments often depends on redox conditions in the sediment. We explored how the physicochemistry and toxicity of anoxic Cu-amended sediments changed as they aged (i.e.
View Article and Find Full Text PDFMetal contaminated sediments can be toxic to aquatic organisms and are common in human-dominated ecosystems, which results in metals being a leading cause of ecosystem impairment. Bioavailability of metals is influenced by their affinity for dissolved and solid-phase ligands, including iron (Fe) oxyhydroxides, which have been hypothesized to reduce metal toxicity in sediments. The authors examined the adsorption kinetics of copper (Cu) and nickel (Ni) with goethite (α-FeOOH) and characterized the influences of solute metal concentration, pH, ionic strength, and humate concentration on steady-state partitioning of the metals with goethite under conditions representative of natural aquatic environments.
View Article and Find Full Text PDFMercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives.
View Article and Find Full Text PDFConsumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States.
View Article and Find Full Text PDFAccumulation of monomethylmercury (MMHg) by plankton is a key process influencing concentrations of this toxic mercury species in marine food webs and seafood. We examined bioaccumulation and biomagnification of MMHg in microseston and four size fractions of zooplankton on the continental shelf, slope, and rise of the northwest Atlantic Ocean. The bioaccumulation factor (BAF, L/kg) for MMHg in microseston averaged 10(4.
View Article and Find Full Text PDFMany lake ecosystems worldwide experience severe eutrophication and associated harmful blooms of cyanobacteria due to high loadings of phosphorus (P). While aluminum sulfate (alum) has been used for decades as chemical treatment of eutrophic waters, the ecological effects of alum on coupled metal and nutrient cycling are not well known. The objective of our study was to investigate the effects of an in-situ alum treatment on aluminum and nutrient (P, N, and S) cycling in a hypereutrophic lake ecosystem.
View Article and Find Full Text PDFKnowledge of Hg speciation in tissue is valuable for assessing potential toxicological effects in fish. Direct Hg analyzers, which use thermal decomposition and atomic absorption spectrometry, have recently gained popularity for determining organic Hg after procedural solvent extraction from some environmental media, although quantitative recovery from lipid-rich materials, such as fish liver, has been problematic. The authors developed a new method by which organic Hg in fish liver and muscle is estimated by the difference between direct measurements of inorganic Hg in an acid extract and total Hg in whole tissue.
View Article and Find Full Text PDFDiffusive gradients in thin films (DGTs) rapidly measure labile fractions of metal and are promoted as an assessment tool for bioavailability. Using macroinvertebrate community composition as a response, this study compared the predictive ability of DGT-measured Ni with acid volatile sulfide (AVS) and organic carbon (OC) corrected Ni [(SEM(Ni)-AVS)/f(OC)] and total Ni concentrations. In two experiments, sediments were amended with Ni and placed within either a streamside mesocosm or deployed in situ.
View Article and Find Full Text PDF