Unlabelled: N-methyl-D-aspartate receptors (NMDARs) comprise a family of ligand-gated ionotropic glutamate receptors that mediate a slow, calcium-permeable component to excitatory neurotransmission. The GluN2D subunit is enriched in GABAergic inhibitory interneurons in cortical tissue. Diminished levels of GABAergic inhibition contribute to multiple neuropsychiatric conditions, suggesting that enhancing inhibition may have therapeutic utility, thus making GluN2D modulation an attractive drug target.
View Article and Find Full Text PDFN-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit.
View Article and Find Full Text PDFN-methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptors, mediate a slow component of excitatory synaptic transmission in the central nervous system and play a key role in normal brain function and development. Genetic variations in GRIN genes encoding NMDAR subunits that alter the receptor's functional characteristics are associated with a wide range of neurological and neuropsychiatric conditions. Pathological GRIN variants located in the M2 re-entrant loop lining the channel pore cause significant functional changes, the most consequential alteration being a reduction in voltage-dependent Mg inhibition.
View Article and Find Full Text PDFAstrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood.
View Article and Find Full Text PDFMany physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions.
View Article and Find Full Text PDFConsiderable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics.
View Article and Find Full Text PDF-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs.
View Article and Find Full Text PDFNMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.
View Article and Find Full Text PDFN-methyl-d-aspartate receptors (NMDARs), a subset of ligand-gated ionotropic glutamate receptors, are critical for learning, memory, and neuronal development. However, when NMDAR subunits are mutated, a host of neuropathological conditions can occur, including epilepsy. Recently, genetic variation within the GRIN2D gene, which encodes the GluN2D subunit of the NMDAR, has been associated with a set of early-onset neurological diseases, notably developmental and epileptic encephalopathy (DEE).
View Article and Find Full Text PDFMany chemicals have been used to increase the safety of consumer products by reducing their flammability and risk for ignition. Recent focus on brominated flame retardants, such as polybrominated diphenyl ethers (PBDEs) has shown them to contribute to neurobehavioral deficits in children, including learning and memory. As the manufacture and use of PBDEs have been reduced, replacement chemicals, such as hexabromocyclododecane (HBCDD) have been substituted.
View Article and Find Full Text PDF