Publications by authors named "Chad P Byers"

Nanoparticle and thin film surface plasmons are highly sensitive to electrochemically induced dielectric changes. We exploited this sensitivity to detect reversible electrochemical potential-driven anion adsorption by developing single-particle plasmon voltammetry (spPV) using plasmonic nanoparticles. spPV was used to detect sulfate electroadsorption to individual Au nanoparticles.

View Article and Find Full Text PDF

The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape.

View Article and Find Full Text PDF

Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule.

View Article and Find Full Text PDF

A hyperspectral imaging method was developed that allowed the identification of heterogeneous plasmon response from 50 nm diameter gold colloidal particles on a conducting substrate in a transparent three-electrode spectroelectrochemical cell under non-Faradaic conditions. At cathodic potentials, we identified three distinct behaviors from different nanoparticles within the same sample: irreversible chemical reactions, reversible chemical reactions, and reversible charge density tuning. The irreversible reactions in particular would be difficult to discern in alternate methodologies.

View Article and Find Full Text PDF

Two maximum likelihood estimation (MLE) methods were developed for optimizing the analysis of single-molecule trajectories that include phenomena such as experimental noise, photoblinking, photobleaching, and translation or rotation out of the collection plane. In particular, short, single-molecule trajectories with photoblinking were studied, and our method was compared to existing analytical techniques applied to simulated data. The optimal method for various experimental cases was established, and the optimized MLE method was applied to a real experimental system: single-molecule diffusion of fluorescent molecular machines known as nanocars.

View Article and Find Full Text PDF