Background: The most recent guidelines (European Society of Cardiology (ESC) and American College of Cardiology/American Heart Association (ACC/AHA)) all favor prasugrel/ticagrelor over clopidogrel in the setting of acute coronary syndrome (ACS). We therefore sought to investigate which P2Y12 inhibitors were being prescribed in our community hospital setting upon discharge among patients undergoing percutaneous coronary intervention (PCI) in the setting of ST-elevation myocardial infarction (STEMI).
Methods: We identified patients presenting to two Metro Detroit Michigan hospitals with STEMI between January 1, 2018, to December 31, 2021 using the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) PCI registry.
Background DJ-1 is a ubiquitously expressed protein typically associated with the development of early onset Parkinson disease. Recent data suggest that it also plays a role in the cellular response to stress. Here, we sought to determine the role DJ-1 plays in the development of heart failure.
View Article and Find Full Text PDFBackground Lymphatic vessels interconnect with blood vessels to form an elaborate system that aids in the control of tissue pressure and edema formation. Although the lymphatic system has been known to exist in a heart, little is known about the role the cardiac lymphatic system plays in the development of heart failure. Methods and Results Mice (C57 BL /6J, male, 8 to 12 weeks of age) were subjected to either myocardial ischemia or myocardial ischemia and reperfusion for up to 28 days.
View Article and Find Full Text PDFBackground: Hydrogen sulfide (HS) is an important regulator of mitochondrial bioenergetics, but its role in regulating mitochondrial biogenesis is not well understood. Using both genetic and pharmacological approaches, we sought to determine if HS levels directly influenced cardiac mitochondrial content.
Results: Mice deficient in the HS-producing enzyme, cystathionine γ-lyase (CSE KO) displayed diminished cardiac mitochondrial content when compared to wild-type hearts.
Angiotensin II (Ang II) modulates blood pressure and atherosclerosis development through its vascular type-1 (AT1R) and type-2 (AT2R) receptors, which have opposing effects. AT2R activation produces hypotension, and is anti-atherogenic. Targeted overexpression of AT2Rs in vascular smooth muscle cells (VSMCs) indicates that these effects are due to increased nitric oxide (NO) generation.
View Article and Find Full Text PDFRecent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart.
View Article and Find Full Text PDFBackground: Therapeutic strategies aimed at increasing hydrogen sulfide (H2S) levels exert cytoprotective effects in various models of cardiovascular injury. However, the underlying mechanism(s) responsible for this protection remain to be fully elucidated. Nuclear factor E2-related factor 2 (Nrf2) is a cellular target of H2S and facilitator of H2S-mediated cardioprotection after acute myocardial infarction.
View Article and Find Full Text PDFDiabetic cardiomyopathy is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. However, the underlying molecular mechanisms that lead to its development have not been fully elucidated. Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that is critical for the regulation of cardiovascular homeostasis.
View Article and Find Full Text PDFBackground: Coronary artery disease remains the principal cause of death in patients with diabetes mellitus. Diabetic mice display exacerbated injury following myocardial ischemia-reperfusion (MI/R) and are resistant to most therapeutic interventions. We have reported that sodium sulfide (Na2S) therapy confers cardioprotection during MI/R in non-diabetic mice.
View Article and Find Full Text PDFRationale: Nitric oxide (NO) bioavailability is reduced in the setting of heart failure. Nitrite (NO2) is a critically important NO intermediate that is metabolized to NO during pathological states. We have previously demonstrated that sodium nitrite ameliorates acute myocardial ischemia/reperfusion injury.
View Article and Find Full Text PDFPrevious studies have demonstrated that hydrogen sulfide (H2S) protects against multiple cardiovascular disease states in a similar manner as nitric oxide (NO). H2S therapy also has been shown to augment NO bioavailability and signaling. The purpose of this study was to investigate the impact of H2S deficiency on endothelial NO synthase (eNOS) function, NO production, and ischemia/reperfusion (I/R) injury.
View Article and Find Full Text PDFThe infarct sparing effects of exercise are evident following both long-term and short-term training regimens. Here we compared the infarct-lowering effects of nitrite therapy, voluntary exercise, and the combination of both following myocardial ischemia-reperfusion (MI/R) injury. We also compared the degree to which each strategy increased cardiac nitrite levels, as well as the effects of each strategy on the nitrite reductase activity of the heart.
View Article and Find Full Text PDFHydrogen sulfide (H2S) therapy protects nondiabetic animals in various models of myocardial injury, including acute myocardial infarction and heart failure. Here, we sought to examine whether H2S therapy provides cardioprotection in the setting of type 2 diabetes. H2S therapy in the form of sodium sulfide (Na2S) beginning 24 h or 7 days before myocardial ischemia significantly decreased myocardial injury in db/db diabetic mice (12 wk of age).
View Article and Find Full Text PDFBackground: Cystathionine γ-lyase (CSE) produces H2S via enzymatic conversion of L-cysteine and plays a critical role in cardiovascular homeostasis. We investigated the effects of genetic modulation of CSE and exogenous H2S therapy in the setting of pressure overload-induced heart failure.
Methods And Results: Transverse aortic constriction was performed in wild-type, CSE knockout, and cardiac-specific CSE transgenic mice.
Objective: The aim of this study was to determine whether thioredoxin 1 (Trx1) mediates the cardioprotective effects of hydrogen sulfide (H2S) in a model of ischemic-induced heart failure (HF).
Approach And Results: Mice with a cardiac-specific overexpression of a dominant negative mutant of Trx1 and wild-type littermates were subjected to ischemic-induced HF. Treatment with H2S as sodium sulfide (Na2S) not only increased the gene and protein expression of Trx1 in the absence of ischemia but also augmented the HF-induced increase in both.
Rationale: Exercise training confers sustainable protection against ischemia-reperfusion injury in animal models and has been associated with improved survival following a heart attack in humans. It is still unclear how exercise protects the heart, but it is apparent that endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) play a role.
Objective: To determine the role of β(3)-adrenergic receptors (β(3)-ARs), eNOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of exercise.
Background: Hydrogen sulfide (H(2)S) is an endogenous signaling molecule with potent cytoprotective effects. The present study evaluated the therapeutic potential of H(2)S in murine models of heart failure.
Methods And Results: Heart failure was induced by subjecting mice either to permanent ligation of the left coronary artery for 4 weeks or to 60 minutes of left coronary artery occlusion followed by reperfusion for 4 weeks.
Gasotransmitters are lipid soluble, endogenously produced gaseous signaling molecules that freely permeate the plasma membrane of a cell to directly activate intracellular targets, thus alleviating the need for membrane-bound receptors. The gasotransmitter family consists of three members: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). H(2)S is the latest gasotransmitter to be identified and characterized and like the other members of the gasotransmitter family, H(2)S was historically considered to be a toxic gas and an environmental/occupational hazard.
View Article and Find Full Text PDF