Publications by authors named "Chad N Brocker"

Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Here, we present a reliable, and simply reproducible process for constructing user-controlled long rounded extracellular matrix (ECM)-embedded vascular microlumens on-chip for endothelization and co-culture with stromal cells obtained from human lung. We demonstrate the critical impact of microchannel cross-sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating -observed blood flow biomechanics in health and disease.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor α (PPARα) is a key mediator of lipid metabolism and metabolic stress in the liver. A recent study revealed that PPARα-dependent long non-coding RNAs (lncRNAs) play an important role in modulating metabolic stress and inflammation in the livers of fasted mice. Here hepatic lncRNA 3930402G23Rik (G23Rik) was found to have active peroxisome proliferator response elements (PPREs) within its promoter and is directly regulated by PPARα.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor α (PPARA) is a key mediator of lipid metabolism and inflammation. Activation of PPARA in rodents causes hepatocyte proliferation, but the underlying mechanism is poorly understood. This study focused on genes repressed by PPARA and analyzed the mechanism by which PPARA promotes hepatocyte proliferation in mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of let-7 microRNA in regulating lipid metabolism through its interaction with PPARα, a key receptor involved in managing liver fat levels.
  • A novel mouse model lacking let-7b/c2 in liver cells shows resistance to obesity and fatty liver when fed a high-fat diet, suggesting that let-7 plays a significant role in lipid regulation.
  • The research identifies a pathway where elevated let-7 leads to increased levels of RNF8, which in turn reduces the expression of RXRα, a necessary partner for PPARα, thereby affecting hepatic lipid catabolism.
View Article and Find Full Text PDF
Article Synopsis
  • Research on caloric restriction may reveal new therapies to reduce inflammation.
  • PPARα, a nuclear receptor, promotes fat utilization during fasting and activates the Gm15441 gene, which inhibits the production of a pro-inflammatory factor (TXNIP).
  • Experiments with Gm15441-null mice indicate that this gene plays a crucial role in reducing inflammation related to fasting and PPARα activation by suppressing NLRP3 inflammasome activation.
View Article and Find Full Text PDF

Introduction: Metoprolol succinate is a long-acting beta-blocker prescribed for the management of hypertension (HTN) and other cardiovascular diseases. Metabolomics, the study of end-stage metabolites of upstream biologic processes, yield insight into mechanisms of drug effectiveness and safety. Our aim was to determine metabolomic profiles associated with metoprolol effectiveness for the treatment of hypertension.

View Article and Find Full Text PDF

Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor alpha (PPARα) controls lipid homeostasis through regulation of lipid transport and catabolism. PPARα activators are clinically used for hyperlipidemia treatment. The role of PPARα in bile acid (BA) homeostasis is beginning to emerge.

View Article and Find Full Text PDF

Background & Aims: Many genetic and environmental factors, including family history, dietary fat, and inflammation, increase risk for colon cancer development. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that regulates systemic lipid homeostasis. We explored the role of intestinal PPARα in colon carcinogenesis.

View Article and Find Full Text PDF

Chronic activation of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARA) promotes MYC-linked hepatocellular carcinoma (HCC) in mice. Recent studies have shown that MYC can function as an amplifier of transcription where MYC does not act as an "on-off" switch for gene expression but rather accelerates transcription rates at active promoters by stimulating transcript elongation. Considering the possibility that MYC may amplify the expression of PPARA target genes to potentiate cell proliferation and liver cancer, gene expression was analyzed from livers of wild-type and liver-specific Myc knockout (Myc ) mice treated with the PPARA agonist pirinixic acid.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor α (PPARα) is a key nuclear receptor involved in the control of lipid homeostasis. In rodents, PPARα is also a potent hepatic mitogen. Hepatocyte-specific disruption of PPARα inhibits agonist-induced hepatocyte proliferation; however, little is known about the exact role of PPARα in partial hepatectomy (PHx)-induced liver regeneration.

View Article and Find Full Text PDF

PPARα (PPARA), expressed in most oxidative tissues, is a major regulator of lipid homeostasis; hepatic PPARA plays a critical role during the adaptive fasting response by promoting FA oxidation (FAO). To clarify whether extrahepatic PPARA activity can protect against lipid overload when hepatic PPARA is impaired, lipid accumulation was compared in WT (), total body -null (), and hepatocyte-specific -null () mice that were fasted for 24 h. Histologic staining indicated reduced lipid accumulation in versus mice, and biochemical analyses revealed diminished medium- and long-chain FA accumulation in mouse livers.

View Article and Find Full Text PDF

Background: Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated.

Methods: Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting.

View Article and Find Full Text PDF

Background And Aim: Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target of various fibrate drugs clinically used to lower serum lipids. However, the tissue-specific functions of PPARα remain to be elucidated. This study aimed to explore the tissue-specific functions of PPARα in response to Wy-14643.

View Article and Find Full Text PDF

While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation.

View Article and Find Full Text PDF

Bile acids are synthesized from cholesterol in the liver and subjected to multiple metabolic biotransformations in hepatocytes, including oxidation by cytochromes P450 (CYPs) and conjugation with taurine, glycine, glucuronic acid, and sulfate. Mice and rats can hydroxylate chenodeoxycholic acid (CDCA) at the 6β-position to form α-muricholic acid (MCA) and ursodeoxycholic acid (UDCA) to form β-MCA. However, MCA is not formed in humans to any appreciable degree and the mechanism for this species difference is not known.

View Article and Find Full Text PDF

Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in Western countries. Glycyrrhizin (GL), a potent hepatoprotective constituent extracted from the traditional Chinese medicine liquorice, has potential clinical use in treating APAP-induced liver failure. The present study determined the hepatoprotective effects and underlying mechanisms of action of GL and its active metabolite glycyrrhetinic acid (GA).

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) regulates bile acid, lipid and glucose metabolism. Here we show that treatment of mice with glycine-β-muricholic acid (Gly-MCA) inhibits FXR signalling exclusively in intestine, and improves metabolic parameters in mouse models of obesity. Gly-MCA is a selective high-affinity FXR inhibitor that can be administered orally and prevents, or reverses, high-fat diet-induced and genetic obesity, insulin resistance and hepatic steatosis in mice.

View Article and Find Full Text PDF

Fibrates, such as fenofibrate, are peroxisome proliferator-activated receptor-α (PPARα) agonists and have been used for several decades as hypolipidemic agents in the clinic. However, contradictory observations exist on the role of fibrates in host response to acute inflammation, with unclear mechanisms. The role of PPARα in colitis was assessed using fenofibrate and Ppara-null mice.

View Article and Find Full Text PDF

The 'A-disintegrin and metalloproteinase' ( ADAM ) and 'A-disintegrin and metalloproteinase with thrombospondin motifs' ( ADAMTS ) genes make up two similar, yet distinct, gene families. The human and mouse genomes contain 21 and 24 putatively functional protein-coding ADAM genes, respectively, and 24 versus 32 putatively functional protein-coding ADAMTS genes, respectively. Analysis of evolutionary divergence shows that both families are unique.

View Article and Find Full Text PDF

The glutathione (GSH) antioxidant defense system plays a central role in protecting mammalian cells against oxidative injury. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme in GSH biosynthesis and is a heterodimeric holoenzyme composed of catalytic (GCLC) and modifier (GCLM) subunits. As a means of assessing the cytoprotective effects of enhanced GSH biosynthetic capacity, we have developed a protein transduction approach whereby recombinant GCL protein can be rapidly and directly transferred into cells when coupled to the HIV TAT protein transduction domain.

View Article and Find Full Text PDF